[1]

乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003: 51−55.

[2]

GLASSTONE S, DOLAN P J. The effects of nuclear weapons [R]. USA: Defense Technical Information Center, 1977: 453−501. DOI: 10.21236/ada087568.

[3] 段晓瑜, 崔庆忠, 郭学永, 等.  炸药在空气中爆炸冲击波的地面反射超压实验研究[J]. 兵工学报, 2016, 37(12): 2277-2283.   doi: 10.3969/j.issn.1000-1093.2016.12.013
DUAN Xiaoyu, CUI Qingzhong, GUO Xueyong, et al.  Experimental investigation of ground reflected overpressure of shock wave in air blast[J]. Acta Armamentarii, 2016, 37(12): 2277-2283.   doi: 10.3969/j.issn.1000-1093.2016.12.013
[4] HIRT C W, AMSDEN A A, COOK J L.  An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227-253.   doi: 10.1016/0021-9991(74)90051-5
[5] OSHER S, SETHIAN J A.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.   doi: 10.1016/0021-9991(88)90002-2
[6] TRYGGVASON G, BUNNER B, ESMAEELI A, et al.  A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759.   doi: 10.1006/jcph.2001.6726
[7] FEDKIW R P, ASLAM T, MERRIMAN B, et al.  A non-oscillatory Eulerian approach to interfaces in multimaterial flows: the ghost fluid method[J]. Journal of Computational Physics, 1999, 152(2): 457-492.   doi: 10.1006/jcph.1999.6236
[8] LIU T G, KHOO B C, WANG C W.  The ghost fluid method for compressible gas-water simulation[J]. Journal of Computational Physics, 2005, 204(1): 193-221.   doi: 10.1016/j.jcp.2004.10.012
[9] SCHOCH S, NORDIN-BATES K, NIKIFORAKIS N.  An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives[J]. Journal of Computational Physics, 2013, 252: 163-194.   doi: 10.1016/j.jcp.2013.06.020
[10]

CROWL W K. Structures to resist the effects of accidental explosions [M]. USA: US Army, Navy and Air Force, US Government Printing Office, 1969: 205−315.

[11] 徐维铮, 吴卫国.  爆炸波高精度数值计算程序开发及应用[J]. 中国舰船研究, 2017, 12(3): 64-74.   doi: 10.3969/j.issn.1673-3185.2017.03.010
XU Weizheng, WU Weiguo.  Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64-74.   doi: 10.3969/j.issn.1673-3185.2017.03.010
[12] TÜRKER L.  Thermobaric and enhanced blast explosives (TBX and EBX)[J]. Defence Technology, 2016, 12(6): 423-445.   doi: 10.1016/j.dt.2016.09.002
[13] 张洪武, 何扬, 张昌权.  空中爆炸冲击波地面荷载的数值模拟[J]. 爆炸与冲击, 1992, 12(2): 156-165.
ZHANG Hongwu, HE Yang, ZHANG Changquan.  Numerical simulation on ground surface loading of shock wave from air explosions[J]. Explosion and Shock Waves, 1992, 12(2): 156-165.
[14] 赵海涛, 王成.  空中爆炸问题的高精度数值模拟研究[J]. 兵工学报, 2013, 34(12): 1536-1546.   doi: 10.3969/j.issn.1000-1093.2013.12.008
ZHAO Haitao, WANG Cheng.  High resolution numerical simulation of air explosion[J]. Acta Armamentarii, 2013, 34(12): 1536-1546.   doi: 10.3969/j.issn.1000-1093.2013.12.008
[15]

BAKER W E. Explosions in air [M]. USA: University of Texas Press, 1973: 55−95.

[16] 姚成宝, 李若, 田宙, 等.  空气自由场中强爆炸冲击波传播二维数值模拟[J]. 爆炸与冲击, 2015, 35(4): 585-590.   doi: 10.11883/1001-1455(2015)04-0585-06
YAO Chengbao, LI Ruo, TIAN Zhou, et al.  Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion and Shock Waves, 2015, 35(4): 585-590.   doi: 10.11883/1001-1455(2015)04-0585-06
[17] 姚成宝, 浦锡锋, 寿列枫, 等.  强爆炸冲击波在不均匀空气中传播数值模拟[J]. 计算力学学报, 2015, 32(S1): 6-9.
YAO Chengbao, PU Xifeng, SHOU Liefeng, et al.  Numeircal simulation of blast wave propagation in nonuniform air[J]. Chinese Journal of Computational Mechanics, 2015, 32(S1): 6-9.
[18]

SYMBALISTY E M D, ZINN J, WHITAKER R W. RADFLO physics and algorithms: LA-12988-MS [R]. USA: Los Alamos National Lab, 1995. DOI: 10.2172/110714.

[19] SETHIAN J A.  Evolution, implementation, and application of level set and fast marching methods for advancing fronts[J]. Journal of Computational Physics, 2001, 169(2): 503-555.   doi: 10.1006/jcph.2000.6657
[20] SUSSMAN M, SMEREKA P, OSHER S.  A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159.   doi: 10.1006/jcph.1994.1155
[21] DI Yana, LI Ruo, TANG Tao, et al.  Level set calculations for incompressible two-phase flows on a dynamically adaptive grid[J]. Journal of Scientific Computing, 2007, 31(1/2): 75-98.   doi: 1007/s10915-006-9119-3
[22]

TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 102-200. DOI:10.1007/b79761.

[23] LI R, WU S N.  h-adaptive mesh method with double tolerance adaptive strategy for hyperbolic conservation laws[J]. Journal of Scientific Computing, 2013, 56(3): 616-636.   doi: 10.1007/s10915-013-9692-1