[1]

黄寅生. 炸药理论[M]. 北京: 兵器工业出版社, 2009: 6−30.

[2]

郑毅. 瞬时热源(爆炸烟云)浮力涡环研究[D]. 北京: 清华大学, 2008: 12−40.

[3] 李晓丽, 郑毅, 刘伟, 等.  爆炸烟云运动的试验与数值模拟研究初探[J]. 核电子学与探测技术, 2011, 31(2): 131-135.   doi: 10.3969/j.issn.0258-0934.2011.02.002
LI Xiaoli, ZHENG Yi, LIU Wei, et al.  A preliminary study on the experiment and numerical simulation of explosive smoke[J]. Nuclear Electronics and Detection Technology, 2011, 31(2): 131-135.   doi: 10.3969/j.issn.0258-0934.2011.02.002
[4] 王善强, 毛用泽.  " 脏弹”爆炸初始烟云特征分析[J]. 防化研究, 2007, (4): 21-24.
[5] MAKHVILADZE G M, ROBERTS J P, YAKUSH S E.  Modeling of atmospheric pollution by explosions[J]. Environmental Software, 1995, 10(2): 117-127.   doi: 10.1016/0266-9838(94)00005-r
[6]

KANSA E J. A time dependant buoyant puff model for explosion sources: UCRL-ID-128733 [R]. USA: Lawrence Livermore National Laboratory, 1997.

[7] KANARSKA Y, LOMOV I, GLENN L, et al.  Numerical simulation of cloud rise phenomena associated with nuclear bursts[J]. Annals of Nuclear Energy, 2009, 36(10): 1475-1483.   doi: 10.1016/j.anucene.2009.08.009
[8] MISHRA K B, WEHRSTEDT K D, KREBS H.  Boiling liquid expanding vapour explosion (BLEVE) of peroxy-fuels: experiments and computational fluid dynamics (CFD) simulation[J]. Energy Procedia, 2015, 66(2): 149-152.
[9]

THIELEN H, SCHRODL E. Blast experiments for the derivation of initial cloud dimensions after a " dirty bomb” event: Koln- 50667 [R]. Germany, 2004.

[10] SHARON A, HALEVY I, SATTINGER D, et al.  Cloud rise model for radiological dispersal devices events[J]. Atmospheric Environment, 2012, 54: 603-610.   doi: 10.1016/j.atmosenv.2012.02.050
[11] LEBLEL L, BOURGOUIN P, CHOUHAN S, et al.  The sensitivity of atmospheric dispersion calculations in near-field applications: modeling of the full-scale RDD experiments with operational models in Canada: part I[J]. Health Physics, 2016, 110(5): 499-517.
[12]

CHURCH H W. Cloud rise from high explosive detonations: TID-4500 [R]. USA: Sandia National Laboratories (SNL), 1969.

[13]

BROWN R C, KOLB C E, Conant J A, et al. Source characterization model (SCM): a predictive capability for the source terms of residual energetic material from burning and/or detonation activities: ART-RR-1384 [R]. 2004.

[14] 袁涛, 罗永锋, 尚爱国, 等.  爆炸烟云中粒子运动的数值模拟[J]. 爆炸与冲击, 2013, 33(5): 556-560.
YUAN Tao, LUO Yongfeng, SHANG Aiguo, et al.  Numerical study on particle motion in explosive buoyant[J]. Explosion and Shock Waves, 2013, 33(5): 556-560.
[15] 陈福振, 强洪夫, 苗刚, 等.  燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究[J]. 物理学报, 2015, 64(11): 110202-110202.
CHEN Fuzhen, QIANG Hongfu, MIAO Gang, et al.  Numerical simulation of smooth discrete particle hydrodynamic method for fuel dispersion and its burning and explosion[J]. Chinese Journal of Physics, 2015, 64(11): 110202-110202.
[16] 段中山, 罗永锋, 袁伟, 等.  爆炸烟团扩散的实验与仿真研究[J]. 高压物理学报, 2013, 27(2): 305-311.
DUAN Zhongshan, LUO Yongfeng, YUAN Wei, et al.  Experiment and simulation of explosive cloud diffusion[J]. Journal of High Pressure Physics, 2013, 27(2): 305-311.
[17] WU C, LUKASZEWICZ M, SCHEBELLA K, et al.  Experimental and numerical investigation of confined explosion in a blast chamber[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 737-750.   doi: 10.1016/j.jlp.2013.02.001
[18] ABDUL-KARIM N, BLACKMAN C S, GILL P P, et al.  The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation[J]. Journal of Hazardous Materials, 2016, 316(4): 204-213.   doi: 10.1016/j.jhazmat.2016.04.081
[19] KWAK H Y, KANG K M, KO I, et al.  Fire-ball expansion and subsequent shock wave propagation from explosives detonation[J]. International Journal of Thermal Sciences, 2012, 59(9): 9-16.   doi: 10.1016/j.ijthermalsci.2012.04.022
[20]

王瑞金, 张凯, 王刚. Fluent技术基础与应用实例[M]. 北京: 清华大学出版社, 2007: 5−60.

[21] FEDINA E, FUREBY C.  Investigating ground effects on mixing and afterburning during a TNT explosion[J]. Shock Waves, 2013, 23(3): 251-261.   doi: 10.1007/s00193-012-0420-9