[1]

LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008.

[2] SHEPHERD J E.  Detonation in gases[J]. Proceedings of the Combustion Institute, 2009, 32(1): 83-98.   doi: 10.1016/j.proci.2008.08.006
[3] LEE J.  Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16(1): 311-336.   doi: 10.1146/annurev.fluid.16.1.311
[4]

DESBORDES D, GUERRAUD C, HAMADA L, et al. Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems [M] // Dynamic Aspects of Detonations. WashingtonDC: AIAA, 1993: 347-359. DOI: 10.2514/5.9781600866265.0347.0359

[5] 姜宗林, 滕宏辉.  气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究[J]. 中国科学: 物理学力学天文学, 2012, 42(4): 421-435.
JIANG Zonglin, TENG Honghui.  Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2012, 42(4): 421-435.
[6] 张薇, 刘云峰, 滕宏辉, 等.  气相爆轰波传播过程中的自点火效应[J]. 爆炸与冲击, 2017, 37(2): 274-282.   doi: 10.11883/1001-1455(2017)02-0274-09
ZHANG Wei, LIU Yunfeng, TENG Honghui, et al.  Auto-ignition effect in gaseous detonation propagation[J]. Explosion and Shock Waves, 2017, 37(2): 274-282.   doi: 10.11883/1001-1455(2017)02-0274-09
[7] 颜秉健, 张博, 高远, 等.  气相爆轰波近失效状态的传播模式[J]. 爆炸与冲击, 2018, 38(6): 1435-1440.   doi: 10.11883/bzycj-2017-0167
YAN Bingjian, ZHANG Bo, GAO Yuan, et al.  Investigation of the propagation modes for gaseous detonation at near-limit condition[J]. Explosion and Shock Waves, 2018, 38(6): 1435-1440.   doi: 10.11883/bzycj-2017-0167
[8] SORIN R, ZITOUN R, KHASAINOV B, et al.  Detonation diffraction through different geometries[J]. Shock Waves, 2009, 19(1): 11-23.   doi: 10.1007/s00193-008-0179-1
[9] LV Y, IHME M.  Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1963-1972.   doi: 10.1016/j.proci.2014.07.041
[10] WU Y W, ZHENG Q, WENG C S.  An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures[J]. Energy, 2018, 143: 554-561.   doi: 10.1016/j.energy.2017.11.019
[11] 喻健良, 张东, 闫兴清.  管道内全阻塞障碍物对气相爆轰波传播特性的影响[J]. 爆炸与冲击, 2017, 37(3): 447-452.   doi: 10.11883/1001-1455(2017)03-0447-06
YU Jianliang, ZHANG Dong, YAN Xingqing.  Influences of blocked obstacles on propagation of gaseous detonation in pipeline[J]. Explosion and Shock Waves, 2017, 37(3): 447-452.   doi: 10.11883/1001-1455(2017)03-0447-06
[12] ZHANG B, LIU H.  The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture[J]. Combustion and Flame, 2017, 182: 279-287.   doi: 10.1016/j.combustflame.2017.04.025
[13] 刘杰, 赵焕娟, 杜忠华, 等.  气相爆轰波马赫反射非自相似性特征的实验[J]. 航空动力学报, 2016, 31(3): 588-597.   doi: 10.13224/j.cnki.jasp.2016.03.009
LIU Jie, ZHAO Huanjuan, DU Zhonghua, et al.  Experiment on non-self-similar of Mach reflection of gaseous detonation wave[J]. Journal of Aerospace Power, 2016, 31(3): 588-597.   doi: 10.13224/j.cnki.jasp.2016.03.009
[14] 赵焕娟, 严屹然, 张英华, 等.  预混气爆轰马赫反射实验研究[J]. 推进技术, 2017, 38(11): 2572-2579.   doi: 10.13675/j.cnki.tjjs.2017.11.021
ZHAO Huanjuan, YAN Yiran, ZHANG Yinghua, et al.  Experimental studying on Mach reflection of detonation wave of premixed mixtures[J]. Journal of Propulsion Technology, 2017, 38(11): 2572-2579.   doi: 10.13675/j.cnki.tjjs.2017.11.021
[15] SOLOUKHIN R I.  Multiheaded structure of gaseous detonation[J]. Combustion and Flame, 1966, 10(1): 51-58.   doi: 10.1016/0010-2180(66)90027-7
[16] 朱雨建, 杨基明.  爆轰波与激波对撞的实验研究[J]. 力学学报, 2008, 40(6): 721-728.   doi: 10.3321/j.issn:0459-1879.2008.06.001
ZHU Yujian, YANG Jiming.  An experimental study on head-on collision of detonation with shock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 721-728.   doi: 10.3321/j.issn:0459-1879.2008.06.001
[17] BOTROS B, NG H, ZHU Y, et al.  The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave[J]. Combustion and Flame, 2007, 151(4): 573-580.   doi: 10.1016/j.combustflame.2007.07.018
[18] LI J, REN H L, WANG X H, et al.  Length scale effect on Mach reflection of cellular detonations[J]. Combustion and Flame, 2018, 189: 378-392.   doi: 10.1016/j.combustflame.2017.11.002
[19] LEE J H S, RADULESCU M I.  On the hydrodynamic thickness of cellular detonations[J]. Combustion, Explosion, and Shock Waves, 2005, 41(6): 745-765.   doi: 10.1007/s10573-005-0084-1
[20] CICCARELLI G, BOCCIO J L.  Detonation wave propagation through a single orifice plate in a circular tube[J]. Symposium (International) on Combustion, 1998, 27(2): 2233-2239.   doi: 10.1016/s0082-0784(98)80072-6
[21] PINTGEN F, SHEPHERD J E.  Detonation diffraction in gases[J]. Combustion and Flame, 2009, 156(3): 665-677.   doi: 10.1016/j.combustflame.2008.09.008
[22] ZHANG B, SHEN X B, PANG L, et al.  Detonation velocity deficits of H2/O2/Ar mixture in round tube and annular channels[J]. International Journal of Hydrogen Energy, 2015, 40(43): 15078-15087.   doi: 10.1016/j.ijhydene.2015.09.036
[23]

SHEPHERD J E. Detonation database[DB/OL]. (2005-01-25)[2015-08-28]. http://shepherd.caltech.edu/detn_db/html/db.html

[24] ZHAO H, LEE J H S, LEE J, et al.  Quantitative comparison of cellular patterns of stable and unstable mixtures[J]. Shock Waves, 2016, 26(5): 621-633.   doi: 10.1007/s00193-016-0673-9
[25] GAO Y, NG H D, LEE J H S.  Minimum tube diameters for steady propagation of gaseous detonations[J]. Shock Waves, 2014, 24(4): 447-454.   doi: 10.1007/s00193-014-0505-8