[1] WANG Y, MA T H, ZHU J J.  Analysis on cushion performance of quartz sand in high-g shock[J]. Computer Modelling & New Technologies, 2014, 18(12D): 367-370.
[2] LING Y F, ZHANG Q, ZHANG F Y, et al.  Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression[J]. Materials Science and Engineering: A, 2017, 696: 236-247.   doi: 10.1016/j.msea.2017.04.060
[3] FAN Z Q, MIAO Y Z, WANG Z Z, et al.  Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams[J]. Composites Part B: Engineering, 2019, 171: 329-338.   doi: 10.1016/j.compositesb.2019.05.008
[4] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al.  Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. International Journal of Impact Engineering, 2008, 35(9): 967-976.   doi: 10.1016/j.ijimpeng.2007.07.004
[5] SONG B, CHEN W N, LUK V.  Impact compressive response of dry sand[J]. Mechanics of Materials, 2009, 41(6): 777-785.   doi: 10.1016/j.mechmat.2009.01.003
[6] FARR J V.  One-dimensional loading-rate effects[J]. Journal of Geotechnical Engineering, 1990, 116(1): 119-135.   doi: 10.1061/(ASCE)0733-9410(1990)116:1(119)
[7] YAMAMURO J A, ABRANTES A E, LADE P V.  Effect of strain rate on the stress-strain behavior of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1169-1178.   doi: 10.1061/(ASCE)GT.1943-5606.0000542
[8] HUANG J Y, XU S L, HU S S.  Influence of particle breakage on the dynamic compression responses of brittle granular materials[J]. Mechanics of Materials, 2014, 68: 15-28.   doi: 10.1016/j.mechmat.2013.08.002
[9] HUANG J, XU S, HU S.  Effects of grain size and gradation on the dynamic responses of quartz sands[J]. International Journal of Impact Engineering, 2013, 59: 1-10.   doi: 10.1016/j.ijimpeng.2013.03.007
[10] HUANG J Y, LU L, FAN D, et al.  Heterogeneity in deformation of granular ceramics under dynamic loading[J]. Scripta Materialia, 2016, 111: 114-118.   doi: 10.1016/j.scriptamat.2015.08.028
[11] MONDAL D P, JHA N, GULL B, et al.  Microarchitecture and compressive deformation behaviour of Al-alloy (LM13)-cenosphere hybrid Al-foam prepared using CaCO3 as foaming agent[J]. Materials Science and Engineering: A, 2013, 560: 601-610.   doi: 10.1016/j.msea.2012.10.003
[12] LADE P V, YAMAMURO J A, BOPP P A.  Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316.   doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
[13] LIU H Y, KOU S Q, LINDQVIST P A.  Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing[J]. Mechanics of Materials, 2005, 37(9): 935-954.   doi: 10.1016/j.mechmat.2004.10.002
[14] 倪素环, 陈青果, 侯书军.  颗粒层受压破碎过程的试验研究[J]. 金属矿山, 2011, (1): 109-111, 127.
NI S H, CHEN Q G, HOU S J.  Experimental research on compression crushing process of granular layer[J]. Metal Mine, 2011, (1): 109-111, 127.
[15] HARDIN B O.  Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.   doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)

池昌江. 准脆性颗粒材料的受压渐进破碎机制研究[D]. 北京: 清华大学, 2015.


黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究[D]. 合肥: 中国科学技术大学, 2016.