[1] WANG Y, MA T H, ZHU J J. Analysis on cushion performance of quartz sand in high-g shock [J]. Computer Modelling & New Technologies, 2014, 18(12D): 367–370.
[2] LING Y F, ZHANG Q, ZHANG F Y, et al. Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression [J]. Materials Science and Engineering: A, 2017, 696: 236–247. DOI: 10.1016/j.msea.2017.04.060.
[3] FAN Z Q, MIAO Y Z, WANG Z Z, et al. Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams [J]. Composites Part B: Engineering, 2019, 171: 329–338. DOI: 10.1016/j.compositesb.2019.05.008.
[4] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. DOI: 10.1016/j.ijimpeng.2007.07.004.
[5] SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
[6] FARR J V. One-dimensional loading-rate effects [J]. Journal of Geotechnical Engineering, 1990, 116(1): 119–135. DOI: 10.1061/(ASCE)0733-9410(1990)116:1(119).
[7] YAMAMURO J A, ABRANTES A E, LADE P V. Effect of strain rate on the stress-strain behavior of sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1169–1178. DOI: 10.1061/(ASCE)GT.1943-5606.0000542.
[8] HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
[9] HUANG J, XU S, HU S. Effects of grain size and gradation on the dynamic responses of quartz sands [J]. International Journal of Impact Engineering, 2013, 59: 1–10. DOI: 10.1016/j.ijimpeng.2013.03.007.
[10] HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
[11] MONDAL D P, JHA N, GULL B, et al. Microarchitecture and compressive deformation behaviour of Al-alloy (LM13)-cenosphere hybrid Al-foam prepared using CaCO3 as foaming agent [J]. Materials Science and Engineering: A, 2013, 560: 601–610. DOI: 10.1016/j.msea.2012.10.003.
[12] LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials [J]. Journal of Geotechnical Engineering, 1996, 122(4): 309–316. DOI: 10.1061/(ASCE)0733-9410(1996)122:4(309).
[13] LIU H Y, KOU S Q, LINDQVIST P A. Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing [J]. Mechanics of Materials, 2005, 37(9): 935–954. DOI: 10.1016/j.mechmat.2004.10.002.
[14] 倪素环, 陈青果, 侯书军. 颗粒层受压破碎过程的试验研究 [J]. 金属矿山, 2011(1): 109–111, 127.

NI S H, CHEN Q G, HOU S J. Experimental research on compression crushing process of granular layer [J]. Metal Mine, 2011(1): 109–111, 127.
[15] HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: 10.1061/(ASCE)0733-9410(1985)111:10(1177).
[16] 池昌江. 准脆性颗粒材料的受压渐进破碎机制研究[D]. 北京: 清华大学, 2015.
[17] 黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究[D]. 合肥: 中国科学技术大学, 2016.