[1] 刘崇权, 杨志强, 汪稔.  钙质土力学性质研究现状与进展[J]. 岩土力学, 1995, (4): 74-84.
LIU C Q, YANG Z Q, WANG R.  The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, (4): 74-84.
[2] DATTA M, RAO G V, GULHATI S K.  The nature and engineering behavior of carbonate soils at Bombay High, India[J]. Marine Geotechnology, 1981, 4(4): 307-341.   doi: 10.1080/10641198109379830
[3]

STERIANOS B. Geotechnical properties of carbonate soils with reference to an improved engineering classification [D]. Rondebosch: University of Cape Town, 1988: 1−4.

[4]

ALBA J L, AUDIBERT J M. Pile design in calcareous and carbonaceous granular materials, and historic review [C] // Proceedings of the 2nd international conference on engineering for calcareous sediments. Rotterdam: AA Balkema. 1999, 1: 29−44.

[5] WANG X, JIAO Y, WANG R, et al.  Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1): 40-47.   doi: 10.1016/j.enggeo.2011.03.011
[6] 曹梦, 叶剑红.  南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, (5): 1771-1777.   doi: 10.16285/j.rsm.2018.1267
CAO M, YE J H.  Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea[J]. Rock and Soil Mechanic, 2019, (5): 1771-1777.   doi: 10.16285/j.rsm.2018.1267
[7] AL-DOURI R H, POULOS H G.  Static and cyclic direct shear tests on carbonate sands[J]. Geotechnical Testing Journal, 1992, 15(2): 138-157.   doi: 10.1520/GTJ10236J
[8] COOP M R.  The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626.   doi: 10.1680/geot.1990.40.4.607
[9] COOP M R, ATKINSON J H.  The mechanics of cemented carbonate sands[J]. Géotechnique, 1993, 43(1): 53-67.   doi: 10.1680/geot.1993.43.1.53
[10] 文祝, 邱艳宇, 紫民, 等.  钙质砂的准一维应变压缩试验研究[J]. 爆炸与冲击, 2019, 39(3): 1-11.   doi: 10.11883/bzycj-2018-0015
WEN Z, QIU Y Y, ZI M, et al.  Experimental study on quasi-one-dimensional strain compression of calcareous sand[J]. Explosion and Shock Waves, 2019, 39(3): 1-11.   doi: 10.11883/bzycj-2018-0015
[11] 魏久淇, 王明洋, 邱艳宇, 等.  钙质砂动态力学特性试验研究[J]. 振动与冲击, 2018, 37(24): 7-12.   doi: 10.13465/j.cnki.jvs.2018.24.002
WEI J Q, WANG M Y, QIU Y Y, et al.  Impact compressive response of calcareous sand[J]. Journal of Vibration and Shock, 2018, 37(24): 7-12.   doi: 10.13465/j.cnki.jvs.2018.24.002
[12]

VEYERA G E. Uniaxial stress-strain behavior of unsaturated soils at high strain rates: WR-TL-93-3523 [R]. Fort Belvoir, VA: Defense Technical Information Center, 1994.

[13] BARR A D, CLARKE S D, TYAS A, et al.  Effect of moisture content on high strain rate compressibility and particle breakage in loose sand[J]. Experimental Mechanics, 2018, 58(8): 1331-1334.   doi: 10.1007/s11340-018-0405-4
[14]

王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2010: 52−60.

[15] 胡时胜, 唐志平, 王礼立.  应变片技术在动态力学测量中的应用[J]. 实验力学, 1987, (2): 75-84.
HU S S, TANG Z P, WANG L L.  Application of strain gage technique in dynamic measurement[J]. Journal of Experimental Mechanics, 1987, (2): 75-84.
[16] BUSSAC M N, COLLET P, GARY G, et al.  An optimization method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements: application to elastic or viscoelastic bars[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(2): 321-349.   doi: 10.1016/S0022-5096(01)00057-6
[17] TYAS A, WATSON A J.  An investigation of frequency domain dispersion correction of pressure bar signals[J]. International Journal of Impact Engineering, 2001, 25(1): 87-101.   doi: 10.1016/S0734-743X(00)00025-7
[18] TYAS A, POPE D J.  Full correction of first-mode Pochammer-Chree dispersion effects in experimental pressure bar signals[J]. Measurement Science and Technology, 2005, 16(3): 642-.   doi: 10.1088/0957-0233/16/3/004
[19] BACON C.  An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. Experimental Mechanics, 1998, 38(4): 242-249.   doi: 10.1007/BF02410385
[20]

LOVE A E H. A Treatise on the mathematical theory of elasticity [M]. 4th ed. New York: Dover Publications, 1944: 289−291.

[21] SONG B, CHEN W, LUK V.  Impact compressive response of dry sand[J]. Mechanics of Materials, 2009, 41(6): 777-785.   doi: 10.1016/j.mechmat.2009.01.003
[22] MARTIN B E, KABIR M E, CHEN W.  Undrained high-pressure and high strain-rate response of dry sand under triaxial loading[J]. International Journal of Impact Engineering, 2013, 54: 51-63.   doi: 10.1016/j.ijimpeng.2012.10.008
[23] SEMBLAT J, LUONG M P, GARY G.  3D-Hopkinson bar: new experiments for dynamic testing on soils[J]. Soils and Foundations, 1999, 39(1): 1-10.   doi: 10.3208/sandf.39.1
[24]

KABIR E. Dynamic behavior of granular materials [D]. Indiana: Purdue University, 2010: 13−35.

[25]

FARR J V. Loading rate effects on the one-dimensional compressibility of four partially saturated soils [R]. Army Engineer Waterways Experiment Station Vicksburg MS Structures LAB, 1986: 373.

[26]

谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015: 10.

[27] MULILIS J P, ARULANANDAN K, MITCHELL J K, et al.  Effects of sample preparation on sand liquefaction[J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91-108.
[28] LADD R S.  Specimen preparation and cyclic stability of sands[J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103: 535-547.
[29] JUANG C H, HOLTZ R D.  Fabric, pore size distribution, and permeability of sandy soils[J]. Journal of Geotechnical Engineering, 1986, 112(9): 855-868.   doi: 10.1061/(ASCE)0733-9410(1986)112:9(855)
[30] NIMMO J R, AKSTIN K C.  Hydraulic conductivity of a sandy soil at low water content after compaction by various methods[J]. Soil Science Society of America Journal, 1988, 52(2): 303-310.   doi: 10.2136/sssaj1988.03615995005200020001x
[31]

PIERCE J, CHARLIE W A. High-intensity compressive stress wave propagation through unsaturated sands: ESL-TR-90-12 [R]. Tyndall: Air Force Engineering and Services Center, 1990.

[32] MARTIN B E, CHEN W, SONG B, et al.  Moisture effects on the high strain-rate behavior of sand[J]. Mechanics of Materials, 2009, 41(6): 786-798.   doi: 10.1016/j.mechmat.2009.01.014
[33]

FELICE C W. The response of soil to impulse loads using the split-Hopkinson pressure bar technique [D]. Utah: The University of Utah, 1986: 246−291.

[34] LUO H Y, COOPER W L, LU H B.  Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates[J]. International Journal of Impact Engineering, 2014, 65: 40-55.   doi: 10.1016/j.ijimpeng.2013.11.001
[35]

BLOUIN S E, KWANG J K. Undrained compressibility of saturated soil: DNA-TR-87-42 [R]. USA: ARA, 1984.

[36]

AKERS S A. Two-dimensional finite element analysis of porous geomaterials at multikilobar stress levels [D]. Virginia: Virginia Tech., 2001: 124.