[1] KOLSKY H.  The propagation of stress pulses in viscoelastic solids[J]. Philosophical Magazine Letters, 1956, 1(8): 693-710.   doi: 10.1080/14786435608238144
[2]

HUNTER S C. Viscoelastic waves [C] // Progress in solid mechanics. North-Holland Amsterdam, 1960: 3−56.

[3] ZHAO H, GARY G, KLEPACZKO J R.  On the use of a viscoelastic split Hopkinson pressure bar[J]. International Journal of Impact Engineering, 1997, 19(4): 319-330.   doi: 10.1016/s0734-743x(96)00038-3
[4] ZHAO H, GARY G.  A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(8): 1335-1348.   doi: 10.1016/0022-5096(95)00030-M
[5] BACON C, BRUN A.  Methodology for a Hopkinson test with a non-uniform viscoelastic bar[J]. International Journal of Impact Engineering, 2000, 24(3): 219-230.   doi: 10.1016/s0734-743x(99)00166-9
[6] BACON C.  Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects[J]. International Journal of Impact Engineering, 1999, 22(1): 55-69.   doi: 10.1016/s0734-743x(98)00048-7
[7] BACON C, HOSTEN B, GUILLIORIT E.  One-dimensional prediction of the acoustic waves generated in a multilayer viscoelastic body by microwave irradiation[J]. Journal of Sound and Vibration, 2000, 238(5): 853-867.   doi: 10.1006/jsvi.2000.3136
[8] BACON C.  An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. Experimental Mechanics, 1998, 38(4): 242-249.   doi: 10.1007/bf02410385
[9] CASEM D T.  Wave propagation in viscoelastic pressure bars using single-point measurements of strain and velocity[J]. Polymer Testing, 2003, 22(2): 155-164.   doi: 10.1016/s0142-9418(02)00064-8
[10] MOUSAVI S.  Non-equilibruim split Hopkinson pressure bar procedure for non-parametric identification of complex modulus[J]. International Journal of Impact Engineering, 2005, 31(9): 1133-1151.   doi: 10.1016/j.ijimpeng.2004.07.002
[11] MOUSAVI S, NICOLAS D F, LUNDBERG B.  Identification of complex moduli and Poisson’s ratio from measured strains on an impacted bar[J]. Journal of Sound and Vibration, 2004, 277(4-5): 971-986.   doi: 10.1016/j.jsv.2003.09.053
[12] BENATAR A, RITTEL D, YARIN A L.  Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1413-1431.   doi: 10.1016/s0022-5096(03)00056-5
[13] CHREE C.  The equations of an isotropic elastic solid in polar and cylindrical coordinates their solution and application[J]. Transactions of the Cambridge Philosophical Society, 1889, 14: 250-369.
[14] AHONSI B, HARRIGAN J J, ALEYAASIN M.  On the propagation coefficient of longitudinal stress waves in viscoelastic bars[J]. International Journal of Impact Engineering, 2012, 45: 39-51.   doi: 10.1016/j.ijimpeng.2012.01.004
[15] BUTT H S U, XUE P, JIANG T Z, et al.  Parametric identification for material of viscoelastic SHPB from wave propagation data incorporating geometrical effects[J]. International Journal of Mechanical Sciences, 2015, 91: 46-64.   doi: 10.1016/j.ijmecsci.2014.06.003
[16] BUTT H S U, XUE P.  Determination of the wave propagation coefficient of viscoelastic SHPB: Significance for characterization of cellular materials[J]. International Journal of Impact Engineering, 2014, 74: 83-91.   doi: 10.1016/j.ijimpeng.2013.11.010
[17] FAN L F, WONG L N Y, MA G W.  Experimental investigation and modeling of viscoelastic behavior of concrete[J]. Construction and Building Materials, 2013, 48: 814-821.   doi: 10.1016/j.conbuildmat.2013.07.010
[18] OTHMAN R.  On the use of complex Young's modulus while processing polymeric Kolsky-Hopkinson bars' experiments[J]. International Journal of Impact Engineering, 2014, 73: 123-134.   doi: 10.1016/j.ijimpeng.2014.06.009
[19] 卢强, 王占江, 丁洋, 等.  线黏弹性球面发散应力波的频率响应特性[J]. 爆炸与冲击, 2017, 37(6): 1023-1030.   doi: 10.11883/1001-1455(2017)06-1023-08
LU Qiang, WANG Zhanjiang, DING Yang, et al.  Characteristics of frequency response for linear viscoelastic spherical divergent stress waves[J]. Explosion and Shock Waves, 2017, 37(6): 1023-1030.   doi: 10.11883/1001-1455(2017)06-1023-08
[20] LU Q, WANG Z J.  Studies of the propagation of viscoelastic spherical divergent stress waves based on the generalized Maxwell model[J]. Journal of Sound and Vibration, 2016, 371: 183-195.   doi: 10.1016/j.jsv.2016.02.034
[21] 王占江, 李孝兰, 张若棋, 等.  固体介质中球形发散波的实验装置[J]. 爆炸与冲击, 2000, 20(2): 103-109.
WANG Zhanjiang, LI Xiaolan, ZHANG Ruoqi, et al.  An experimental apparatus for spherical wave propagation in solid[J]. Explosion and Shock Waves, 2000, 20(2): 103-109.
[22] 王占江, 张德志, 张向荣, 等.  蓝田花岗岩冲击压缩特性的实验研究[J]. 岩石力学与工程学报, 2003, 22(5): 797-802.   doi: 10.3321/j.issn:1000-6915.2003.05.020
WANG Zhanjiang, ZHANG Dezhi, ZHANG Xiangrong, et al.  Testing study on shock compression for Lantian granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 797-802.   doi: 10.3321/j.issn:1000-6915.2003.05.020
[23] 卢强, 王占江, 门朝举, 等.  有机玻璃中球形应力波传播的分析[J]. 爆炸与冲击, 2013, 33(6): 561-566.   doi: 10.11883/1001-1455(2013)06-0561-06
LU Qiang, WANG Zhanjiang, MEN Chaoju, et al.  Analysis of spherical stress save propagating in PMMA[J]. Explosion and Shock Waves, 2013, 33(6): 561-566.   doi: 10.11883/1001-1455(2013)06-0561-06
[24] 卢强, 王占江.  标准线性固体材料中球面应力波传播特征研究[J]. 物理学报, 2015, 64(10): 108301-.   doi: 10.7498/aps.64.108301
LU Qiang, WANG Zhanjiang.  Characteristics of spherical stress wave propagation in the standard linear solid material[J]. Acta Physica Sinica, 2015, 64(10): 108301-.   doi: 10.7498/aps.64.108301
[25]

王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.