[1]

Dynamic environmental criteria: NASA-HDBK-7005[S]. USA, 2001.

[2]

Pyroshock test criteria: NASA-STD-7003A[S]. USA, 2011.

[3]

Environment engineering considerations and laboratory tests: MIL-STD-810F[S]. USA: Department of Defense, 2000.

[4]

Filippi E. Pyroshock simulation using the alcatel etca test facility[C]//Launch Vehicle Vibrations. First European Conference. Toulouse: CNES, 1999.

[5]

Meoning C J. Pyrotechnic shock flight failures[C]//Institute of Environmental Sciences Pyrotechnic Shock Tutorial Program, 31st Annual Technical Meeting. 1985.

[6]

Mcgrath M B, Rader W P. Aerospace systems pyrotechnic shock data. Volume Ⅶ: Investigation of mass loading effects[R]. N71-19250, 1970.

[7]

Environment engineering considerations and laboratory tests[M]. USA: Department of Defense, 2000.

[8] 丁继锋, 赵欣, 韩增尧, 等.航天器火工冲击技术研究进展[J].宇航学报, 2014, 35(12):1339-1349.  doi: 10.3873/j.issn.1000-1328.2014.12.001
Ding Jifeng, Zhao Xin, Han Zengyao. Research development of spacecraft pyroshock technique[J]. Journal of Astronautics, 2014, 35(12):1339-1349.  doi: 10.3873/j.issn.1000-1328.2014.12.001
[9]

Piersol A G, Paez T L. Harris' shock and vibration handbook[M]. 6th ed. New York: The McGraw-Hill Companies, Inc, 2010.

[10]

军用装备实验室环境试验方法第27部分: 爆炸分离冲击实验: GJB 150.27-2009[S]. 2009.

[11] Lee J R, Chia C C, Kong C W. Review of pyroshock wave measurement and simulation for space systems[J]. Measurement, 2012, 45(4):631-642.  doi: 10.1016/j.measurement.2011.12.011
[12]

Http://Telecom.Esa.Int/Telecom/www/Object/Index.Cfm?Fobjectid=30565, Available.

[13]

Girard A, Pont C, Courau E. Very first results form pyroshock database for satellites[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.

[14]

Courau E, Roy P. Ariane 5 shock environment qualification for an earth observation satellite[C]//European Conference on Spacecraft Structure, Material & Mechanical Testing 2005. Noordwijk, The Netherlands, 2005.

[15]

Filippi E, Dolez F. Development of the alcatel etca pyroshock test facility[C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing 1999. Braunschweig, Germany, 1999.

[16]

Filippi E, Attouoman H, Dolez B. Pyroshcok simulation using the alcatel etca test facility[C]//Launch Vehicle Vibrations. First European Conference. Toulouse: CNES, 1999.

[17]

Dilhan D, Piquereau A, Bonnes L. Definition and manufacturing of the pyroshock bench[C]//7th ESA/CNES International Workshop on Space Pyrotechnics ESTEC. 2008.

[18] 刘斌, 吴江.用火工品产生中高量级冲击的试验技术研究[J].强度与环境, 2007, 34(3):8-13.  doi: 10.3969/j.issn.1006-3919.2007.03.002
Liu Bin, Wu Jiang. A study of producing high level shock environment by pyrotechnic device[J]. Structure & Environment Engineering, 2007, 34(3):8-13.  doi: 10.3969/j.issn.1006-3919.2007.03.002
[19]

Dilhan D, Cipolla V, Grzeskowiak H. Pyroshock generation[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.

[20]

Ali K, Juan F. Tunable beam pyroshock simulation system[C]//Spacecraft and Launch Vehicle Dynamic Environments Workshop. California, USA, 2007.

[21] Benedetti M D, Garofalo G, Zumpano M, et al. On the damping effect due to bolted junctions in space structures subjected to pyro-shock[J]. Acta Astronautica, 2007, 60(12):947-956.  doi: 10.1016/j.actaastro.2006.11.011
[22]

Himelblau H, Piersol A G, Wise J H, et al. Handbook for dynamic data acquisition and analysis. Appendix A: Pyroshock data acquisition and analysis[M]. Mt Prospect, IL: Institute of Environmental Sciences, 1994.

[23] Evans M J, Neubert V H, Bement L J. Measurement, data analysis, and prediction of oyrotechnic shock from pin-pullers and separation joints[J]. Shock and Vibration Bulletin, 1987, 57(2).
[24] Smallwood D O. An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1981, 51(2):211-217.
[25]

Hughes W O, Mcnelis A M. Statistical analysis of a large sample size pyroshock test data set including post flight data assessment[R]. Cleveland, Ohio: Glenn Research Center, 2009.

[26]

Shi Q, Ando S, Seko H, et al. The summarization of pyroshock testing data and SRS level prediction methodology[C]//The 5th International Symposium on Environmental Testing for Space Programmes. Noordwijk, The Netherlands, 2004.

[27]

Ullio R, Marucchi-Chierro P C. Utlization of prediction methods in the shock environment evaluation[C]//The European Conference on Spacecraft Structure, Materials and Mechanical Testing 2001. Noofdwijk, The Netherlands, 2001.

[28]

Girard A, Courau E, Bugeat L P. Pyroshock database for satellites[C]//European Conferenc on Spacecraft Structures, Materials and Mechanical Testing 2000. Noordwijk, the Netherlands, 2000.

[29]

Zukas J A. Introduction to hydrocodes[M]. Elsevier, 2004.

[30]

白金泽.LS-DYNA 3D理论基础与实例分析[M].北京:科学出版社, 2005.

[31]

张雄, 王天舒.计算动力学[M].北京:清华大学出版社, 2007.

[32]

Mary S, Cipolla V, Courau E, et al. Shock propagation simulation using FEM software[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.

[33]

姚德源, 王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社, 1995.

[34] Manning J E, Lee K. Predicting mechanical shock transmission[J]. Shock and Vibration Bulletin, 1968, 37(4):65-70.
[35] Sun H B, Sun J C, Richards E J. Prediction of total loss factors of structures. Part Ⅲ: Effective loss factors in quasi-transient conditions[J]. Journal of Sound and Vibration, 1986, 106(3):465-479.  doi: 10.1016/0022-460X(86)90192-6
[36] Fahy J F, Yao D Y. Power flow between non-conservatively coupled oscillators[J]. Journal of Sound and Vibration, 1987, 114(1):1-11.
[37]

Borello G. SEA航天应用[M]. Belgium: Inter AC, 2010.

[38]

Borello G, Courjal A. Modelling payloads using SEA for vibroacoustic and shock prediction[R]. France: Inter AC-L'Union, 2005.

[39]

SEA: Shock module of SEA+ user's guide[M]. Inter AC, Inc, 2013.

[40]

Dalton E C, Chambers B S. Analysis and validation testing of impulsive load response in complex, multi-compartmented structures[C]//Proceedings of the 36th AIAA Structures, Structural Dynamics, and Materials Conference. 1995.

[41]

Dalton E C, Frydman A, Li A, et al. High frequency shock predictions in armored vehicles: Ags case study[C]//Proceedings of the 16th International Symposium on Ballistics. San Francisco, CA, 1996.

[42]

Dalton E C, Loper R B, Frydman A, et al. Simulation of ballistic shock in composite armored vehicles[C]//Proceedings of the 68th Shock and Vibration Symposium. 1997.

[43]

Dalton E C. High frequency shock prediction, short course notes[M]. Military Technology, Inc, 1999.

[44]

Ullio R, Marucchi-Chierro P C. Auto SEA shock application on shock event simulation: Study case and problematics encountered[R]. Toulouse: Euro PAM, 2006.

[45] Lee D O, Han J H, Jang H W, et al. Shock respones prediction of a low altitude earth observation satellite during launch vechicle separation[J]. International Journal of Aeronautical & Space Sciences, 2010, 11(1):49-57.
[46] 王军评, 毛勇建, 黄含军, 等.统计能量分析法在爆炸分离冲击响应预示中的应用[J].航天器环境工程, 2011, 28(5):414-420.  doi: 10.3969/j.issn.1673-1379.2011.05.002
Wang Junping, Mao Yongjian, Huang Hanjun, et al. Application of statistical energy analysis method in prediction of pyroshock responses[J]. Spacecraft Environment Engineering, 2011, 28(5):414-420.  doi: 10.3969/j.issn.1673-1379.2011.05.002
[47]

柯受全, 金恂叔.卫星环境工程和模拟试验(下)[M].北京:宇航出版社, 1996.

[48] 焦亮, 邓明.爆炸分离冲击试验分析[J].电子产品可靠性与环境试验, 2013, 31(1):31-34.  doi: 10.3969/j.issn.1672-5468.2013.01.007
Jiao Liang, Deng Ming. The pyroshock test[J]. Electronic Product Reliability and Environmental Testing, 2013, 31(1):31-34.  doi: 10.3969/j.issn.1672-5468.2013.01.007
[49] 马斌捷, 张建华, 吴江.火工品爆炸加载方法在火箭分离冲击环境模拟试验中的应用与效果[J].强度与环境, 2007, 34(5):1-7.  doi: 10.3969/j.issn.1006-3919.2007.05.001
Ma Binjie, Zhang Jianhua, Wu Jiang. Applications and effects of pyrotechnic explode loading in shock environment simulation experiment of rocket separation[J]. Structure & Enviroment Engineering, 2007, 34(5):1-7.  doi: 10.3969/j.issn.1006-3919.2007.05.001
[50] 毕文辉, 严楠, 何春全, 等.航天火工品爆炸冲击多参量的测试[J].计测技术, 2009, 29(3):14-16.  doi: 10.3969/j.issn.1674-5795.2009.03.005
Bi Wenhui, Yan Nan, He Chunquan, et al. Measurement of pyroshock for explosive initiating device used in spacecraft[J]. Metrology & Measurement Technology, 2009, 29(3):14-16.  doi: 10.3969/j.issn.1674-5795.2009.03.005
[51] 张欢, 刘天雄, 李长江, 等.航天器火工冲击环境防护技术现状与应用[J].航天器工程, 2014, 23(2):104-113.  doi: 10.3969/j.issn.1673-8748.2014.02.018
Zhang Huan, Liu Tianxiong, Li Changjiang, et al. Status and application analysis of spacecraft pyroshock protection techniques[J]. Spacecraft Engineering, 2014, 23(2):104-113.  doi: 10.3969/j.issn.1673-8748.2014.02.018
[52] 毛勇建, 李玉龙, 陈颖, 等.炸药条加载圆柱壳的数值模拟(Ⅱ):解耦分析与实验验证[J].高压物理学报, 2013, 27(1):76-82.
Mao Yongjian, Li Yulong, Chen Ying, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): Decoupling analysis and experimental validation[J]. Chinese Journal of High Pressure Physics, 2013, 27(1):76-82.
[53] 毛勇建, 李玉龙, 陈颖, 等.炸药条加载圆柱壳的数值模拟(Ⅰ):流固耦合模拟[J].高压物理学报, 2012, 26(2):155-162.
Mao Yongjian, Li Yulong, Chen Ying, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): Fluid-structure interaction simulation[J]. Chinese Journal of High Pressure Physics, 2012, 26(2):155-162.
[54] 王军评, 毛勇建, 黄含军.点式火工分离装置冲击载荷作用机制的数值模拟研究[J].振动与冲击, 2013, 32(2):9-13.  doi: 10.3969/j.issn.1000-3835.2013.02.003
Wang Junping, Mao Yongjian, Huang Hanjun. Numerical simulation for impulsively loading mechanism of a point pyrotechnic separation device[J]. Journal of Vibration and Shock, 2013, 32(2):9-13.  doi: 10.3969/j.issn.1000-3835.2013.02.003