[1] 段建, 杨黔龙, 周刚, 等.串联随进战斗部侵彻混凝土靶实验研究[J].爆炸与冲击, 2007, 27(4):364-369.  doi: 10.3321/j.issn:1001-1455.2007.04.012
Duan Jian, Yang Qianlong, Zhou Gang, et al. Experimental studies of a tandem follow-through warhead penetrating concrete target[J]. Explosion and Shock Waves, 2007, 27(4):364-369.  doi: 10.3321/j.issn:1001-1455.2007.04.012
[2] Swegle J W, Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. Computational Mechanics, 1995, 17(3):151-168.
[3]

Libersky L D, Petscheck A G. Smoothed particle hydrodynamics with strength of materials[C]//Trease H, Fritts J, Crowley W. Proceedings of the Next Free Lagrange Conference. NY: SpringerVerlag, 1991, 395: 248-257.

[4] Libersky L D, Petscheck A G, Carney T C, et al. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1):67-75.
[5] Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers & Fluids, 2003, 32(3):305-322.
[6] Liu M B, Liu G R, Lam K Y, et al. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations[J]. Shock Waves, 2003, 12(6):509-520.  doi: 10.1007/s00193-003-0185-2
[7] Qiang Hongfu, Wang Kunpeng, Gao Weiran. Numerical simulation of shaped charge jet using multi-phase SPH method[J]. Transactions of Tianjin University, 2008, 14(1):495-499.
[8] Ott F, Schnetter E. A modified SPH approach for fluids with large density differences[J]. Arxiv Physics E-prints, 2003:3112.
[9] 强洪夫, 高巍然.完全变光滑长度SPH法及其实现[J].计算物理, 2008, 25(5):569-575.  doi: 10.3969/j.issn.1001-246X.2008.05.008
Qiang Hongfu, Gao Weiran. SPH method with fully variable smoothing lengths and implementation[J]. Chinese Journal of Computational Physics, 2008, 25(5):569-575.  doi: 10.3969/j.issn.1001-246X.2008.05.008
[10] 强洪夫, 王坤鹏, 高巍然.基于完全变光滑长度SPH方法的HE爆轰过程的数值试验[J].含能材料, 2009, 17(1):27-31.  doi: 10.3969/j.issn.1006-9941.2009.01.008
Qiang Hongfu, Wang Kunpeng, Gao Weiran. Numerical study of high explosive detonation process using SPH method with fully variable smoothing lengths[J]. Chinese Journal of Energetic Materials, 2009, 17(1):27-31.  doi: 10.3969/j.issn.1006-9941.2009.01.008
[11]

Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 571-574.

[12] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strain rate[J]. Journal of Applied Physics, 1980, 51(3):1498-1504.  doi: 10.1063/1.327799
[13]

Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591-600.

[14] Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8):1703-1759.  doi: 10.1088/0034-4885/68/8/R01
[15]

Liu G R, Liu M B.光滑粒子流体动力学: 一种无网格粒子法[M].韩旭, 杨刚, 强洪夫, 译.长沙: 湖南大学出版社, 2005: 195-197.

[16]

Livermore Software Technology Corporation. LS-DYNA keyword user's manual[M]. Livermore: Livermore Software Technology Corporation, 2012:17-45.

[17] Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers and Fluids, 2003, 32(3):305-322.