[1] 余明高, 杨勇, 裴蓓, 等.  N2双流体细水雾抑制管道瓦斯爆炸实验研究[J]. 爆炸与冲击, 2017, 37(2): 194-200.   doi: 10.11883/1001-1455(2017)02-0194-07
YU Minggao, YANG Yong, PEI Bei, et al.  Experimental study of methane explosion suppression by nitrogen twin-fluid water mist[J]. Explosion and Shock Waves, 2017, 37(2): 194-200.   doi: 10.11883/1001-1455(2017)02-0194-07
[2] 张培理, 杜扬.  油气爆炸的氮气非预混抑制实验[J]. 爆炸与冲击, 2016, 36(3): 347-352.   doi: 10.11883/1001-1455(2016)03-0347-06
ZHANG Peili, DU Yang.  Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion[J]. Explosion and Shock Waves, 2016, 36(3): 347-352.   doi: 10.11883/1001-1455(2016)03-0347-06
[3] JIANG H, BI M, GAO W, et al.  Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions[J]. Journal of Hazardous Materials, 2017, 344: 902-912.   doi: 10.1016/j.jhazmat.2017.11.054
[4] 范宝春, 李鸿志.  惰性颗粒抑爆过程的数值模拟[J]. 爆炸与冲击, 2000, 20(3): 208-214.
FAN Baochun, LI Hongzhi.  Numerical simulations of explosion suppression by inert particles[J]. Explosion and Shock Waves, 2000, 20(3): 208-214.
[5] 文虎, 王秋红, 邓军, 等.  超细Al(OH)3粉体浓度对甲烷爆炸压力的影响[J]. 煤炭学报, 2009, (11): 1479-1482.   doi: 10.3321/j.issn:0253-9993.2009.11.009
WEN Hu, WANG Qiuhong, DENG Jun, et al.  Effect of the concentration of Al(OH)3 ultrafine powder on the pressure of methane explosion[J]. Journal of China Coal Society, 2009, (11): 1479-1482.   doi: 10.3321/j.issn:0253-9993.2009.11.009
[6] ZHENG L G, ZHENG K, PAN R K, et al.  Inhibition of the premixed CH4/air deflagration by powdered extinguishing agents[J]. Procedia Engineering, 2014, 71: 230-237.   doi: 10.1016/j.proeng.2014.04.033
[7] 喻健良, 闫兴清.  硅酸铝棉对火焰速度和爆炸超压的抑制作用[J]. 爆炸与冲击, 2013, 33(4): 363-368.   doi: 10.11883/1001-1455(2013)04-0363-06
YU Jianliang, YAN Xingqing.  Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion and Shock Waves, 2013, 33(4): 363-368.   doi: 10.11883/1001-1455(2013)04-0363-06
[8] 周佩杰, 王坚, 陶钢, 等.  泡沫材料对冲击波的衰减特性[J]. 爆炸与冲击, 2015, 35(5): 675-681.   doi: 10.11883/1001-1455(2015)05-0675-07
ZHOU Peijie, WANG Jian, TAO Gang, et al.  Attenuation characteristics of shock waves interacting with open and closed foams[J]. Explosion and Shock Waves, 2015, 35(5): 675-681.   doi: 10.11883/1001-1455(2015)05-0675-07
[9] 邵昊, 蒋曙光, 李钦华, 等.  真空腔体积对真空腔抑制瓦斯爆炸性能的影响[J]. 采矿与安全工程学报, 2014, 31(3): 489-493.   doi: 10.13545/j.issn1673-3363.2014.03.025
SHAO Hao, JIANG Shugang, LI Qinhua, et al.  Influence of vacuum chamber volume on gas explosion suppression[J]. Journal of Mining and Safety Engineering, 2014, 31(3): 489-493.   doi: 10.13545/j.issn1673-3363.2014.03.025
[10] 胡俊, 浦以康, 万士昕, 等.  柱形容器开口泄爆过程中压力发展特性的实验研究[J]. 爆炸与冲击, 2001, 21(1): 47-52.
HU Jun, PU Yikang, WAN Shixin, et al.  Experimental investigations of pressure development during explosion vent from cylindrical vessels[J]. Explosion and Shock Waves, 2001, 21(1): 47-52.
[11] 任少峰, 陈先锋, 王玉杰, 等.  泄压口比率对气体泄爆过程中的动力学行为的影响[J]. 煤炭学报, 2011, 36(5): 830-833.   doi: 10.13225/j.cnki.jccs.2011.05.033
REN Shaofeng, CHEN Xianfeng, WANG Yujie, et al.  Effect of pressure-orifice ratio on dynamic behavior during gas venting[J]. Journal of China Coal Society, 2011, 36(5): 830-833.   doi: 10.13225/j.cnki.jccs.2011.05.033
[12] 尤明伟, 蒋军成, 喻源, 等.  等泄压比条件下连通容器泄爆实验研究[J]. 爆炸与冲击, 2012, 32(2): 221-224.   doi: 10.11883/1001-1455(2012)02-0221-04
YOU Mingwei, JIANG Juncheng, YU Yuan, et al.  Experimental study on premixed flammable gas explosion venting in linked vessels under the same effective vent area[J]. Explosion and Shock Waves, 2012, 32(2): 221-224.   doi: 10.11883/1001-1455(2012)02-0221-04
[13] 陈东梁, 孙金华, 刘义, 等.  甲烷/空气预混气体火焰的传播特征[J]. 爆炸与冲击, 2008, 28(5): 385-390.   doi: 10.11883/1001-1455(2008)05-0385-06
CHEN Dongliang, SUN Jinhua, LIU Yi, et al.  Propagation characteristics of premixed methane-air flames[J]. Explosion and Shock Waves, 2008, 28(5): 385-390.   doi: 10.11883/1001-1455(2008)05-0385-06
[14] XIAO H, WANG Q, HE X, et al.  Experimental study on the behaviors and shape changes of premixed hydrogen–air flames propagating in horizontal duct[J]. International Journal of Hydrogen Energy, 2011, 36(10): 6325-6336.   doi: 10.1016/j.ijhydene.2011.02.049
[15] CLANET C, SEARBY G.  On the " tulip flame” phenomenon[J]. Combustion and Flame, 1996, 105(1/2): 225-238.   doi: 0010-2180(95)00195-6
[16] LV X, ZHENG L, ZHANG Y, et al.  Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion[J]. International Journal of Hydrogen Energy, 2016, 41(39): 17740-17749.   doi: 10.1016/j.ijhydene.2016.07.263
[17] CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al.  The effect of particle size polydispersity on the explosibility characteristics of aluminum dust[J]. Powder Technology, 2014, 254(2): 331-337.   doi: 10.1016/j.powtec.2013.11.028
[18] HUANG D, WANG X, YANG J.  Influence of particle size and heating rate on decomposition of BC dry chemical fire extinguishing powders[J]. Particulate Science and Technology, 2015, 33(5): 488-493.   doi: 10.1080/02726351.2015.1013591
[19] 王秋红, 邓军, 罗振敏, 等.  超细氢氧化镁粉体抑制甲烷-空气混合物爆炸效能研究[J]. 中国安全科学学报, 2014, 24(12): 33-37.   doi: 10.16265/j.cnki.issn1003-3033.2014.12.006
WANG Qiuhong, DENG Jun, LUO Zhenmin, et al.  Research on effects of methane explosion suppression by ultrafine magnesium hydroxide powder[J]. China Safety Science Journal, 2014, 24(12): 33-37.   doi: 10.16265/j.cnki.issn1003-3033.2014.12.006
[20] OMAR Dounia, OLIVIER Vermorel, THIERRY Poinsot.  Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles[J]. Combustion & Flame, 2018, 193: 313-326.   doi: 10.1016/j.combustflame.2018.03.033
[21] RALLIS C J, GARFORTH A M.  The determination of laminar burning velocity[J]. Progress in Energy and Combustion Science, 1980, 6(4): 303-329.   doi: 10.1016/0360-1285(80)90008-8
[22] 徐跃萍, 郭景坤, 黄校先, 等.  无团聚ZrO2-Y2O3陶瓷超细粉的制备及微观结构表征[J]. 硅酸盐学报, 1991, (3): 269-273.   doi: 10.3321/j.issn:0454-5648.1991.03.001
XU Yueping, GUO Jingkun, HUANG Xiaoxian, et al.  Preparation and microstructure characteristics of free-agglomerate ultrafine ZrO2-Y2O3 ceramic powder[J]. Journal of the Chinese Ceramic Society, 1991, (3): 269-273.   doi: 10.3321/j.issn:0454-5648.1991.03.001
[23] 冯拉俊, 刘毅辉, 雷阿利.  纳米颗粒团聚的控制[J]. 微纳电子技术, 2003, 40(7): 536-539.   doi: 10.3969/j.issn.1671-4776.2003.07.158
FENG Lajun, LIU Yihui, LEI Ali.  The controlling of nanoparticle agglomerates[J]. Micronanoelectronic Technology, 2003, 40(7): 536-539.   doi: 10.3969/j.issn.1671-4776.2003.07.158
[24] ECKHOFF R K.  Influence of dispersibility and coagulation on the dust explosion risk presented by powders consisting of nm-particles[J]. Powder Technology, 2013, 239(17): 223-230.   doi: 10.1016/j.powtec.2013.02.007
[25] 李国栋, 熊翔, 黄伯云.  纳米粉体大气环境团聚机理及无团聚纳米粉体的制备[J]. 中南大学学报(自然科学版), 2004, 35(4): 527-531.   doi: 10.3969/j.issn.1672-7207.2004.04.002
LI Guodong, XIONG Xiang, HUANG Boyun.  Agglomerate mechanism of nanometer powders in atmosphere and methods of preparation of nan-agglomerate nanometer powders[J]. Journal of Central South University (Science and Technology), 2004, 35(4): 527-531.   doi: 10.3969/j.issn.1672-7207.2004.04.002
[26] RANGANATHAN S, ROCKWELL S R, PETROW D, et al.  Radiative fraction of dust entrained turbulent premixed flames[J]. Journal of Loss Prevention in the Process Industries, 2017, 51: 65-71.   doi: 10.1016/j.jlp.2017.11.009
[27] RANGANATHAN S, PETROW D, ROCKWELL S R, et al.  Turbulent burning velocity of methane–air–dust premixed flames[J]. Combustion and Flame, 2018, 188: 367-375.   doi: 10.1016/j.combustflame.2017.10.015