[1]

JOSHI V S. Process for making polytetrafluoroethylene-aluminium composite and product made: US6547993[P]. 2003.

[2] 阳世清, 徐松林, 张彤. Al/PTFE反应材料制备工艺及性能[J].国防科技大学学报, 2008, 30(6):40-42.
YANG Shiqing, XU Songlin, ZHANG Tong. Preparation and performance of PTEF/Al reactive materials[J]. Journal of National University of Defense Technology, 2008, 30(6):40-42.
[3] 赵鹏铎, 卢芳云, 李俊玲, 等.活性材料Al/PTFE动态压缩性能[J].含能材料, 2009, 17(4):459-462.
ZHAO Pengduo, LU Fangyun, LI Junling, et al. The dynamic compressive properties of Al/PTFE reactive materials[J]. Chinese Journal of Energetic Materials, 2009, 17(4):459-462.
[4] 徐松林, 阳世清, 赵鹏铎, 等.Al/PTFE含能复合材料的压缩力学行为研究[J].力学学报, 2009, 41(5):708-712.
XU Songlin, YANG Shiqing, ZHAO Pengduo, et al. The study on the compressive behavior of Al/PTFE energetic composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5):708-712.
[5] 王海福, 刘宗伟, 俞为民, 等.活性破片能量输出特性试验研究[J].北京理工大学学报, 2009, 29(8):663-666.
WANG Haifu, LIU Zongwei, YU Weimin, et al. Experimental investigation of energy release characteristics of reactive fragments[J]. Transactions of Beijing Institute of Technology, 2009, 29(8):663-666.
[6] MOCK J W, DROTAR J T. Effect of Al particle size on the impact initiation of pressed Al/PTFE composite rods[J]. Shock Compression of Condensed Matter, 2007(6):971-974.
[7] 乌布力艾散·麦麦提图尔荪, 董永香, 葛超, 等.基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟[J].复合材料学报, 2016, 33(11):2528-2536.
MAIMAITITUERSUN Wubuliaisan, DONG Yongxiang, GE Chao, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2528-2536.
[8] 帅俊峰, 蒋建伟, 王树有, 等.复合反应破片对钢靶侵彻的实验研究[J].含能材料, 2009, 17(6):722-725.
SHUAI Junfeng, JIANG Jianwei, WANG Shuyou, et al. Compound reactive fragment penetrating steel target[J]. Chinese Journal of Energetic Materials, 2009, 17(6):722-725.
[9] 谢长友, 蒋建伟, 帅俊峰, 等.复合反应破片对柴油油箱的毁伤效应实验研究[J].高压物理学报, 2009, 23(6):447-452.
XIE Changyou, JIANG Jianwei, SHUAI Junfeng, et al. Experimental study on the damage effect of compound reactive fragment penetrating diesel oil tank[J]. Chinese Journal of High Pressure Physics, 2009, 23(6):447-452.
[10]

AMES R G. Vented chamber calorimetry for impact-nitiated energetic materials[C]//The 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, United States, 2005: 275-279.

[11]

LEE R, MOCK J W, CARNEY J, et al. Reactive materials studies[C]//Shock Compression of Condensed Matter 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland, United States, 2005: 169-174

[12] HUNT E M, MALCOLM S, PANTOYA M L, DAVIS F. Impact ignition of nano and micron composite energetic materials[J]. International Journal of Impact Engineering, 2009, 36(6):842-846.  doi: 10.1016/j.ijimpeng.2008.11.011
[13] ZHANG X, SHI A, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113(8):2129-1156.
[14]

MOCK J W, HOLT W H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders[C]//Shock Compression of Condensed Matter 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland, United States, 2005: 1097-1100.

[15]

MEYERS M A. Dynamic behavior of materials[M]. John Wiley & Sons, Inc.1994.

[16] RAFTENBERG M N, MOCK J W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture[J]. International Journal of Impact Engineering, 2008, 35(12):1735-1744.  doi: 10.1016/j.ijimpeng.2008.07.041
[17] AMES R G. Energy release characteristics of impact-initiated energetic materials[J]. Materials Research Society Symposium Proceedings, 2005, 896(3):321-333.