[1] HASSLBERGER J, KIM H K, KIM B J, et al.  Three-dimensional CFD analysis of hydrogen-air-steam explosions in APR1400 containment[J]. Nuclear Engineering and Design, 2017, 320: 386-399.   doi: 10.1016/j.nucengdes.2017.06.014
[2] LI H W, GUO J, TANG Z S, et al.  Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598-20605.   doi: 10.1016/j.ijhydene.2019.06.029
[3] MUKHIM E D, ABBASI T, TAUSEEF S M, et al.  A method for the estimation of overpressure generated by open air hydrogen explosions[J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 99-107.   doi: 10.1016/j.jlp.2018.01.009
[4] VAAGSAETHER K, GAATHAUG A V, BJERKETVEDT D.  PIV-measurements of reactant flow in hydrogen-air explosions[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8799-8806.   doi: 10.1016/j.ijhydene.2018.10.025
[5] WANG L Q, MA H H, SHEN Z W.  On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6271-6277.   doi: 10.1016/j.ijhydene.2019.01.074
[6]

郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究[D]. 重庆: 重庆大学, 2017.

ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017.

[7] XIAO H H, MAKAROV D, SUN J H, et al.  Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct[J]. Combustion and Flame, 2012, 159(4): 1523-1538.   doi: 10.1016/j.combustflame.2011.12.003
[8] ZHANG S H, ZHANG Q.  Effect of vent size on vented hydrogen-air explosion[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17788-17799.   doi: 10.1016/j.ijhydene.2018.07.194
[9] ZHANG Y, JIAO F Y, HUANG Q, et al.  Experimental and numerical studies on the closed and vented explosion behaviors of premixed methane-hydrogen/air mixtures[J]. Applied Thermal Engineering, 2019, 159: 113907-.   doi: 10.1016/j.applthermaleng.2019.113907
[10] ZHENG L G, DOU Z G, DU D P, et al.  Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct[J]. International Journal of Hydrogen Energy, 2019, 44(49): 27159-27173.   doi: 10.1016/j.ijhydene.2019.08.156
[11] HJERTAGER B H, FUHRE K, BJØRKHAUG M.  Concentration effects on flame acceleration by obstacles in large-scale methane-air and propane-air vented explosions[J]. Combustion Science and Technology, 1988, 62(4−6): 239-256.   doi: 10.1080/00102208808924011
[12] KUNDU S, ZANGANEH J, MOGHTADERI B.  A review on understanding explosions from methane-air mixture[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507-523.   doi: 10.1016/j.jlp.2016.02.004
[13] BAUWENS C R, CHAO J, DOROFEEV S B.  Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen-air deflagrations[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17599-17605.   doi: 10.1016/j.ijhydene.2012.04.053
[14] HISKEN H, ENSTAD G A, MIDDHA P, et al.  Investigation of concentration effects on the flame acceleration in vented channels[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447-459.   doi: 10.1016/j.jlp.2015.04.005
[15] QI S, DU Y, ZHANG P L, et al.  Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion[J]. Journal of Hazardous Materials, 2017, 323: 593-601.   doi: 10.1016/j.jhazmat.2016.06.040
[16] 黄子超, 司荣军, 张延松, 等.  初始温度对瓦斯爆炸特性影响的数值模拟[J]. 煤矿安全, 2012, 43(5): 5-7; 11.   doi: 10.13347/j.cnki.mkaq.2012.05.009
HUANG Z C, SI R J, ZHANG Y S, et al.  Numerical simulation of the influence of initial temperature on gas explosion characteristics[J]. Safety in Coal Mines, 2012, 43(5): 5-7; 11.   doi: 10.13347/j.cnki.mkaq.2012.05.009
[17] 姚洁, 蒋军成, 潘勇.  初始温度对可燃气体爆炸下限影响的研究[J]. 工业安全与环保, 2012, 38(2): 48-50.   doi: 10.3969/j.issn.1001-425X.2012.02.017
YAO J, JIANG J C, PAN Y.  The effect of initial temperature on lower explosion limit of flammable gas[J]. Industrial Safety and Environmental Protection, 2012, 38(2): 48-50.   doi: 10.3969/j.issn.1001-425X.2012.02.017
[18] GAO N.  Effect of initial temperature on free radicals of gas explosion in restricted space[J]. Advanced Materials Research, 2013, 798−799: 138-142.   doi: 10.4028/www.scientific.net/AMR.798-799.138
[19] GRABARCZYK M, TEODORCZYK A, DI SARLI V, et al.  Effect of initial temperature on the explosion pressure of various liquid fuels and their blends[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 775-779.   doi: 10.1016/j.jlp.2016.08.013
[20]

高娜. 初始温度和初始压力对瓦斯爆炸特性的影响研究[D]. 南京: 南京理工大学, 2016.

GAO N. Study on influence of initial temperature and pressure on gas explosion characteristics [D]. Nanjing: Nanjing University of Science and Technology, 2016.

[21] 杜扬, 李国庆, 吴松林, 等.  T型分支管道对油气爆炸强度的影响[J]. 爆炸与冲击, 2015, 35(5): 729-734.   doi: 10.11883/1001-1455(2015)05-0729-06
DU Y, LI G Q, WU S L, et al.  Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe[J]. Explosion and Shock Waves, 2015, 35(5): 729-734.   doi: 10.11883/1001-1455(2015)05-0729-06
[22] 陈鹏, 李艳超, 黄福军, 等.  方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟[J]. 爆炸与冲击, 2017, 37(1): 21-26.   doi: 10.11883/1001-1455(2017)01-0021-06
CHEN P, LI Y C, HUANG F J, et al.  LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle[J]. Explosion and Shock Waves, 2017, 37(1): 21-26.   doi: 10.11883/1001-1455(2017)01-0021-06
[23] 王公忠, 张建华, 李登科, 等.  障碍物对预混火焰特性影响的大涡数值模拟[J]. 爆炸与冲击, 2017, 37(1): 68-76.   doi: 10.11883/1001-1455(2017)01-0068-09
WANG G Z, ZHANG J H, LI D K, et al.  Large eddy simulation of impacted obstacles’ effects on premixed flame’s characteristics[J]. Explosion and Shock Waves, 2017, 37(1): 68-76.   doi: 10.11883/1001-1455(2017)01-0068-09
[24] 王亚磊, 郑立刚, 于水军, 等.  约束端面对管内甲烷爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(9): 095401-.   doi: 10.11883/bzycj-2018-0249
WANG Y L, ZHENG L G, YU S J, et al.  Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion and Shock Waves, 2019, 39(9): 095401-.   doi: 10.11883/bzycj-2018-0249
[25] 杜扬, 李国庆, 王世茂, 等.  障碍物数量对油气泄压爆炸特性的影响[J]. 化工学报, 2017, 68(7): 2946-2955.
DU Y, LI G Q, WANG S M, et al.  Effects of obstacle number on characteristics of vented gasoline-air mixture explosions[J]. CIESC Journal, 2017, 68(7): 2946-2955.
[26] LI G Q, DU Y, WANG S M, et al.  Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe[J]. Journal of Hazardous Materials, 2017, 339: 131-142.   doi: 10.1016/j.jhazmat.2017.06.018
[27]

解茂昭, 贾明. 内燃机计算燃烧学[M]. 3版. 北京: 科学出版社, 2017.

[28] 温小萍, 余明高, 邓浩鑫, 等.  小尺度受限空间内瓦斯湍流爆燃大涡模拟[J]. 化工学报, 2016, 5(5): 1837-1843.   doi: 10.11949/j.issn.0438-1157.20151219
WEN X P, YU M G, DENG H X, et al.  Large eddy simulation of gas turbulent deflagration in small-scale confined space[J]. CIESC Journal, 2016, 5(5): 1837-1843.   doi: 10.11949/j.issn.0438-1157.20151219
[29] WEN X P, YU M G, LIU Z C, et al.  Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4): 730-738.   doi: 10.1016/j.jlp.2012.04.008
[30] LI G Q, DU Y, QI S, et al.  Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 529-536.   doi: 10.1016/j.jlp.2016.07.022
[31] MANNAA O, MANSOUR M S, ROBERTS W L, et al.  Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON[J]. Combustion and Flame, 2015, 162(6): 2311-2321.   doi: 10.1016/j.combustflame.2015.01.004
[32] WEN X P, YU M G, JI W T, et al.  Methane-air explosion characteristics with different obstacle configurations[J]. International Journal of Mining Science and Technology, 2015, 25(2): 213-218.   doi: 10.1016/j.ijmst.2015.02.008
[33] QI S, DU Y, WANG S M, et al.  The effect of vent size and concentration in vented gasoline-air explosions[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88-94.   doi: 10.1016/j.jlp.2016.08.005
[34]

温小萍. 瓦斯湍流爆燃火焰特性与多孔介质淬熄抑爆机理研究[D]. 大连: 大连理工大学, 2014.

WEN X P. Mechanism study on flame characteristics and porous media quenching suppression of gas turbulent deflagration [D]. Dalian: Dalian University of Technology, 2014.

[35] DUNN-RANKIN D, BARR P K, SAWYER R F.  Numerical and experimental study of “tulip” flame formation in a closed vessel[J]. Symposium (International) on Combustion, 1988, 21(1): 1291-1301.   doi: 10.1016/S0082-0784(88)80360-6
[36] GONZALEZ M, BORGHI R, SAOUAB A.  Interaction of a flame front with its self-generated flow in an enclosure: the “tulip flame” phenomenon[J]. Combustion and Flame, 1992, 88(2): 201-220.   doi: 10.1016/0010-2180(92)90052-Q
[37]

肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2013.

XIAO H H. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts [D]. Hefei: University of Science and Technology of China, 2013.

[38] ZHOU B, SOBIESIAK A, QUAN P.  Flame behavior and flame-induced flow in a closed rectangular duct with a 90° bend[J]. International Journal of Thermal Sciences, 2006, 45(5): 457-474.   doi: 10.1016/j.ijthermalsci.2005.07.001
[39]

姜孝海. 泄爆外流场的动力学机理研究[D]. 南京: 南京理工大学, 2004.

JIANG X H. Study on the dynamics of the external flowfield during venting [D]. Nanjing: Nanjing University of Science and Technology, 2004.