[1] RICHTMYER R D.  Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319.   doi: 10.1002/cpa.3160130207
[2] MESHKOV E E.  Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4: 101-104.
[3] RAYLEIGH L.  Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings London Mathematical Society, 1883, 14(1): 170-177.
[4] TAYLOR G I.  The instability of liquid surfaces when accelerated in a direction perpendicular to their plane[J]. Proceedings of the Royal Society of London, Series A, 1950, 201: 192-196.
[5] MCCRORY R L, MONTIERTH L, MORSE R L, et al.  Nonlinear evolution of ablation-driven Rayleigh-Taylor instability[J]. Physical Review Letters, 1981, 46(5): 336-339.   doi: 10.1103/PhysRevLett.46.336
[6] LINDL J D, MEAD W C.  Two-dimensional simulation of fluid instability in laser-fusion pellets[J]. Physical Review Letters, 1975, 34(20): 1273-1276.   doi: 10.1103/PhysRevLett.34.1273
[7] KIFONIDIS K, PLEWA T, SCHECK L, et al.  Non-spherical core collapse supernovae. Ⅱ. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A[J]. Astronomy and Astrophysics, 2006, 453: 661-678.
[8] LOW M M M, ZAHNLE K.  Explosion of comet shoemaker-levy 9 on entry into the jovian atmosphere[J]. The Astrophysical Journal, 1994, 434: L33-L36.   doi: 10.1086/187565
[9] SHUVALOV V V, ARTEMIEVA N A.  Numerical modeling of tunguska-like impacts[J]. Planetary and Space Science, 2002, 50: 181-192.   doi: 10.1016/S0032-0633(01)00079-4
[10] KAUS B J P, PODLADCHIKOV Y Y.  Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability[J]. Geophysical Research Letters, 2001, 28(6): 1095-1098.   doi: 10.1029/2000GL011789
[11] MOLNAR P, HOUSEMAN G A, CONRAD C P.  Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer[J]. Geophysical Journal International, 1998, 133(3): 568-584.   doi: 10.1046/j.1365-246X.1998.00510.x
[12] WANG T, BAI J S, LI P, et al.  The numerical study of shock-induced hydrodynamic instability and mixing[J]. Chinese Physics B, 2009, 18(3): 1127-1135.   doi: 10.1088/1674-1056/18/3/048
[13] WANG T, BAI J S, LI P, et al.  Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interface accelerated by shock waves[J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(5): 905-914.
[14] WANG T, LIU J H, BAI J S, et al.  Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave[J]. Applied Mathematics and Mechanics, 2012, 33(1): 37-50.   doi: 10.1007/s10483-012-1532-x
[15] WANG T, TAO G, BAI J S, et al.  Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS models[J]. Canadian Journal of Physics, 2015, 93(5): 519-525.   doi: 10.1139/cjp-2014-0099
[16] WANG T, LI P, BAI J S, et al.  Large-eddy simulation of the Richtmyer-Meshkov instability[J]. Canadian Journal of Physics, 2015, 93(10): 1124-1130.   doi: 10.1139/cjp-2014-0652
[17] WANG T, BAI J S, LI P, et al.  Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock[J]. High Energy Density Physics, 2016, 19(1): 65-75.
[18] WANG T, TAO G, BAI J S, et al.  Dynamical behavior of the Richtmyer-Meshkov instability-induced turbulent mixing under multiple shock interactions[J]. Canadian Journal of Physics, 2017, 95(8): 671-681.   doi: 10.1139/cjp-2016-0633
[19] BAI J S, LIU J H, WANG T, et al.  Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows[J]. Physical Review E, 2010, 81(2): 056302-.
[20] BAI J S, ZOU L Y, WANG T, et al.  Experimental and numerical study of the shock-accelerated elliptic heavy gas cylinders[J]. Physical Review E, 2010, 82(5): 056318-.   doi: 10.1103/PhysRevE.82.056318
[21] BAI J S, WANG B, WANG T, et al.  Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock[J]. Physical Review E, 2012, 86(6): 066319-.   doi: 10.1103/PhysRevE.86.066319
[22] XIAO J X, BAI J S, WANG T.  Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows[J]. Physical Review E, 2016, 94(1): 013112-.   doi: 10.1103/PhysRevE.94.013112
[23] LIU H, XIAO Z L.  Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability[J]. Physical Review E, 2016, 93(5): 053112-.   doi: 10.1103/PhysRevE.93.053112
[24] 李俊涛, 孙宇涛, 潘建华, 等.  冲击加载下V形界面的失稳与湍流混合[J]. 物理学报, 2016, 65(24): 245202-.   doi: 10.7498/aps.65.245202
LI J T, SUN Y T, PAN J H, et al.  Instability and turbulent mixing of shocked V-shaped interface[J]. Acta Physica Sinica, 2016, 65(24): 245202-.   doi: 10.7498/aps.65.245202
[25] 李俊涛, 孙宇涛, 胡晓棉, 等.  激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响[J]. 物理学报, 2017, 66(23): 235201-.   doi: 10.7498/aps.66.235201
LI J T, SUN Y T, HU X M, et al.  Effect of vortex/wall interaction on turbulent mixing in the Richtmyer-Meshkov instability induced by shocked V shape interface[J]. Acta Physica Sinica, 2017, 66(23): 235201-.   doi: 10.7498/aps.66.235201
[26] LUO X S, DING J C, WANG M H, et al.  A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability[J]. Physics of Fluids, 2015, 27(9): 091702-.   doi: 10.1063/1.4931929
[27] LUO X S, ZHANG F, DING J C, et al.  Long-term effect of Rayleigh-Taylor stabilization on converging Richtmyer-Meshkov instability[J]. Journal of Fluid Mechanics, 2018, 849: 231-244.   doi: 10.1017/jfm.2018.424
[28] SI T, LONG T, ZHAI Z G, et al.  Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder[J]. Journal of Fluid Mechanics, 2015, 784: 225-251.   doi: 10.1017/jfm.2015.581
[29] DING J C, SI T, YANG J M, et al.  Measurement of a Richtmyer-Meshkov instability at an air-SF6 interface in a semiannular shock tube[J]. Physical Review Letters, 2017, 119(1): 014501-.   doi: 10.1103/PhysRevLett.119.014501
[30] LEI F, DING J C, SI T, et al.  Experimental study on a sinusoidal air/SF6 interface accelerated by a cylindrically converging shock[J]. Journal of Fluid Mechanics, 2017, 826: 819-829.   doi: 10.1017/jfm.2017.506

MILE J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335 [R]. 1966.


WHITE G N. One-degree-of-freedom model for the Taylor instability of an ideally plastic metal plate: LA-5225-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.

[33] ROBINSON A C, SWEGLE J W.  Acceleration instability in elastic-plastic solids. II. Analytical techniques[J]. Journal of Applied Physics, 1989, 66(7): 2859-2872.   doi: 10.1063/1.344191
[34] PIRIZ A R, CELA J J L, CORTÁZAR O D, et al.  Rayleigh-Taylor instability in elastic solids[J]. Physical Review E, 2005, 72(5): 056313-.   doi: 10.1103/PhysRevE.72.056313
[35] PIRIZ A R, CELA J J L, TAHIR N A.  Rayleigh-Taylor instability in elastic-plastic solids[J]. Journal of Applied Physics, 2009, 105(11): 116101-.   doi: 10.1063/1.3139267
[36] PIRIZ A R, CELA J J L, TAHIR N A.  Linear analysis of incompressible Rayleigh-Taylor instability in solids[J]. Physical Review E, 2009, 80(4): 046305-.   doi: 10.1103/PhysRevE.80.046305
[37] BAI X B, WANG T, ZHU Y X, et al.  Expansion of linear analysis of Rayleigh-Taylor interface instability of metal materials[J]. World Journal of Mechanics, 2018, 8: 94-106.   doi: 10.4236/wjm.2018.84008
[38] BARNES J F, BLEWETT P J, MCQUEEN R G, et al.  Taylor instability in solids[J]. Journal of Applied Physics, 1974, 45(2): 727-732.   doi: 10.1063/1.1663310
[39] BARNES J F, JANNEY D H, LONDON R K, et al.  Further experimentation on Taylor instability in solids[J]. Journal of Applied Physics, 1980, 51: 4678-4679.   doi: 10.1063/1.328339

LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C] // LEGRAND M, VANDENBOOMGAERDE M. 10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.

[41] DE FRAHAN M T H, BELOF J L, CAVALLO R M, et al.  Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability[J]. Journal of Applied Physics, 2015, 117(22): 225901-.   doi: 10.1063/1.4922336
[42] 王涛, 柏劲松, 曹仁义, 等.  爆轰驱动铝飞层扰动增长的数值模拟[J]. 高压物理学报, 2018, 32(3): 032301-.   doi: 10.11858/gywlxb.20170624
WANG T, BAI J S, CAO R Y, et al.  Numerical investigations of perturbation growth in aluminum flyer driven by explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301-.   doi: 10.11858/gywlxb.20170624
[43] 何长江, 周海兵, 杭义洪.  爆轰驱动金属铝界面不稳定性的数值分析[J]. 中国科学: 物理学, 力学, 天文学, 2009, 39(9): 1170-1173.
HE C J, ZHOU H B, HANG Y H.  Numerical analysis of aluminum interface instability under explosion[J]. Science China: Physics, Mechanics and Astronomy, 2009, 39(9): 1170-1173.
[44] 郝鹏程, 冯其京, 胡晓棉.  内爆加载金属界面不稳定性的数值分析[J]. 爆炸与冲击, 2016, 36(6): 739-744.   doi: 10.11883/1001-1455(2016)06-0739-06
HAO P C, FENG Q J, HU X M.  A numerical study of the instability of the metal shell in the implosion[J]. Explosion and Shock Waves, 2016, 36(6): 739-744.   doi: 10.11883/1001-1455(2016)06-0739-06
[45] 刘军, 冯其京, 周海兵.  柱面内爆驱动金属界面不稳定性的数值模拟研究[J]. 物理学报, 2014, 63(15): 155201-.   doi: 10.7498/aps.63.155201
LIU J, FENG Q J, ZHOU H B.  Simulation study of interface instability in metals driven by cylindrical implosion[J]. Acta Physica Sinica, 2014, 63(15): 155201-.   doi: 10.7498/aps.63.155201
[46] OLSON R T, CERRETA E K, MORRIS C, et al.  The effect of microstructure on Rayleigh-Taylor instability growth in solids[J]. Journal of Physics: Conference Series, 2014, 500: 112048-.   doi: 10.1088/1742-6596/500/11/112048
[47] JENSEN B J, CHERNE F J, PRIME M B, et al.  Jet formation in cerium metal to examine material strength[J]. Journal of Applied Physics, 2015, 118(19): 195903-.   doi: 10.1063/1.4935879
[48] CHERNE F J, HAMMERBERG J E, ANDREWS M J, et al.  On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum[J]. Journal of Applied Physics, 2015, 118(18): 185901-.   doi: 10.1063/1.4934645
[49] PARK H S, LORENZ K T, CACALLO R M, et al.  Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Physical Review Letters, 2010, 104(13): 135504-.   doi: 10.1103/PhysRevLett.104.135504
[50] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.  Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions[J]. Nuclear Instruments and Methods in Physics Research A, 2009, 606: 139-141.   doi: 10.1016/j.nima.2009.03.094
[51] DIMONTE G, TERRONES G, CHERNE F J, et al.  Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities[J]. Physical Review Letters, 2011, 107(26): 264502-.   doi: 10.1103/PhysRevLett.107.264502
[52] LORENZ K T, EDWARDS M J, GLENDINNING S G, et al.  Accessing ultrahigh-pressure, quasi-isentropic states of matter[J]. Physics of Plasmas, 2005, 12(5): 056309-.   doi: 10.1063/1.1873812
[53] PRIME M B, BUTTLER W T, BUECHLER M A, et al.  Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities[J]. Journal of Dynamic Behavior of Materials, 2017, 3: 1-14.   doi: 10.1007/s40870-016-0088-9

LEBEDEV A I, APRELKOV O N, ARINI V A, et al. Perturbation method for study of shear strength of materials at pressures up to ~300 GPa [C] // AIP Conference Proceedings (Shock Compression of Condensed Matter), 2006: 745−748.


FRACHET V, GELEZNIKOFF F, GUIX R, et al. Rayleigh Taylor instability in cylindrical configuration [C] // Proceedings of 2nd International Workshop on the Physics of Compressible Turbulent Mixing. 1989: 862−849.