DOI: 10.11883/bzycj-2018-0131

N_2 与 CO₂ 对合成气爆炸特性影响的实验研究^{*}

余明高^{1,2},韦贝贝¹,郑 凯¹

(1.重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044;2.河南理工大学安全科学与工程学院,河南 焦作 454003)

摘要:为了研究惰性气体(氮气及二氧化碳)对合成气爆炸特性的影响,利用20L球形爆炸仪器,开展 不同体积分数氮气与二氧化碳作用下不同当量比合成气的爆炸实验,从爆炸峰值压力、爆炸压力到达峰值 时间、爆炸指数方面分析惰性气体对合成气爆炸特性的影响。研究结果表明:惰性气体体积分数的增加会 降低合成气的爆炸压力和爆炸指数,推迟爆炸压力到达峰值的时间;在相同体积分数下,CO2比N2能更有效 地降低合成气的爆炸峰值压力和爆炸指数,减小爆炸反应的剧烈程度,CO2在抑制合成气爆炸方面比N2的 效果明显。

关键词: 合成气;爆炸压力;当量比;惰性气体 中图分类号: O381;X932 国标学科代码: 1303510 文献标志码: A

不断增长的能源需求与持续严格限制的污染物排放标准,已经极大地推动了过去十年间对能源、燃料改良方面的研究。在这些研究中,集成气化(气化-燃气-蒸汽)联合循环(IGCC)是最具有前途的发展技术之一,其煤炭气化的主要成分就为合成气。合成气是一种气体混合物,其主要组分是 CO 和 H₂。合成气不仅可以提高能量利用效率,还能显著减少污染物的排放,在未来清洁能源生产与使用中有很大的发展前景。然而,合成气由于其本身较高的爆炸压力和压力上升速率^[1-2],以及一氧化碳本身所具有的毒性,使得合成气在工业上的安全使用一直存在问题。作为一种可燃混合气体,合成气一旦在生产、储存、运输、使用过程中发生泄露,极易发生燃烧爆炸和中毒事故。因此,为了确保合成气在工业生产与使用中的安全,有必要了解合成气的爆炸特性,并研究能有效降低其爆炸危害的方法。

合成气爆炸是一种迅速燃烧过程,因此了解合成气的燃烧特性对研究合成气爆炸特性具有重要意义。由于合成气中除可燃气体组分H₂和CO,还含有少量N₂、CO₂和H₂O等惰性组分。因此,由针对惰性气体对合成气层流燃烧特性的影响研究,可知惰性组分作为稀释剂可以降低最大压力上升速率和减小密闭容器内爆燃产生的危害^[3-9]。Zhang等^[10]对惰性组分N₂和CO₂对贫预混H₂/CO/空气火焰的传播特性进行实验和数值研究,发现CO₂对火焰传播特性的影响比N₂大。安江涛等^[11]研究了CO₂稀释气体及合成气构成对燃烧特性的影响,发现预混气体中CO₂体积分数的增加,会降低燃烧火焰温度,进而降低燃烧速度,增加化学反应滞留时间。对于可燃物质如甲烷、瓦斯等在管道或球室内的爆炸特性方面,已经开展了大量的研究^[1245],但是对合成气在同样条件下的研究较少。另外,研究表明,添加惰性组分(CO₂、N₂和H₂O)对可燃气体爆炸具有显著的抑制作用。王颖^[16]利用 20 L 球形爆炸装置,研究了惰性气体 CO₂、N₂对瓦斯爆炸的抑制作用,发现CO₂的抑爆效果优于N₂。贾宝山等^[17]研究了N₂及 CO₂抑制瓦斯爆炸的机理特性,发现CO₂比N₂能更有效地降低体系中活化中心的浓度和爆炸产生的致灾性气体 CO、NO的浓度。可燃混合气体中惰性组分(CO₂、N₂、H₂O等)的添加,能有效增加爆炸反应中热量的损失,降低最大爆炸压力上升速率,对可燃物爆炸起到了很好的抑制作用^[18-21]。

^{*} 收稿日期: 2018-04-19; 修回日期: 2018-06-26

基金项目: 国家自然科学基金(U1361205, 51574111, 50974055); 煤矿灾害动力学与控制国家重点实验室自主研究课题(2011DA 105287-ZD201401) 第一作者: 余明高(1963-),男,教授,13333910808@126.com;

通信作者:郑 凯(1989—),男,讲师,zkcqu@cqu.edu.cn。

鉴于目前对合成气的研究更多地停留在合成气燃烧特性层面,对合成气爆炸特性以及抑制合成气的爆炸研究较少。所以,为了提高工业上合成气的生产与使用的安全性,降低合成气爆炸对正常生产生活带来的危害,本文中借助 20 L 球形爆炸测试系统,通过在实验中添加不同体积分数的惰性气体(CO₂、N₂),研究它对合成气爆炸特性的影响,以期对工业上合成气的安全生产与使用提供理论依据和指导性建议。

1 实 验

1.1 实验装置

实验装置为20L球形爆炸测试系统(如图1所示),主要包括20L球形爆炸容器、配气系统,控制和数据采集系统。20L球形爆炸容器为不锈钢双层结构,爆炸容器的夹层内可冲水以保持容器内的温度恒定。控制系统包括可编程控制器、电火花发生器、触控屏和压力采集接线端子板等。数据采集系统主要有数据采集计算机,采集设备为PCI1711,采样频率为5000Hz,采样时常为1.6384s。采用脉冲点火,脉冲点火能量为105J,点火延迟时间为60ms。容器壁面安装有压电型压力传感器,传感器动态量程为1.379 MPa,分辨率为0.021 kPa,压力-电压比为0.2758 MPa/V,可测定可燃气体爆炸过程的动态压力。容器内的压力变化过程经压力传感器和变送器转换为电信号,由数据采集系统采集并保存在计算机中。

Fig. 1 Test system with a 20-L spherical explosion vessel

1.2 实验方法

实验中合成气当量比 Φ 和气体体积分数 φ 定义如下(以 79% 的氮和 21% 的氧来代替空气):

$$\Phi = \frac{m_{\text{syngas}} / m_{\text{air}}}{(m_{\text{syngas}} / m_{\text{air}})_{\text{stioch}}}, \qquad \varphi_{\text{H}_2} = \frac{V_{\text{H}_2}}{V_{\text{H}_2} + V_{\text{CO}}}, \qquad \varphi_{\text{inert}} = \frac{V_{\text{inert}}}{V_{\text{air}} + V_{\text{syngas}} + V_{\text{inert}}}$$
(1)

式中: m_{syngas} 和 m_{air} 分别是合成气和空气的质量; φ_{H_2} 、 V_{H_2} 和 V_{CO} 分别为合成气中 H₂的体积分数、H₂的体 积和 CO 的体积; φ_{inert} 、 V_{inert} 、 V_{air} 和 V_{syngas} 分别为 20 L 球形容器内惰性气体的体积分数、充入的惰性气体 体积、空气体积和充入的合成气体积。

为了对比分析添加惰性气体对合成气爆炸特性的影响,在3组工况下进行实验,合成气中H₂与CO各占50%,采用的合成气当量比 ϕ 为0.5、1.0、1.5、2.0,惰性气体体积分数为5%、10%、15%、20%、25%。第1组工况包括不添加惰性气体时,不同当量比下的4个合成气爆炸实验工况;第2组工况包括添加5种不同体积分数的N₂时,在4种不同当量比下的20个合成气爆炸实验工况;第3组工况包括添加5种不同体积分数的CO₂时,在4种不同当量比下的20个合成气爆炸实验工况。不同工况下各种气体体积分数具体见表1。

	Та	ble 1 Volui	ne fraction of ga	ses under dif	fferent experime	ntal conditio	ns	
φ_{inert} /% _	$\varphi_{\rm H_2}, \varphi_{\rm CO}/\%$	$\varphi_{\rm air}/\%$						
	Ф=0.5		Φ=1.0		Ф=1.5		Ф=2.0	
0	8.68	82.64	14.79	70.42	19.33	61.34	22.83	54.34
5.00	8.25	78.50	14.05	66.90	18.36	58.28	21.69	51.62
10.00	7.81	74.38	13.31	63.38	17.39	55.22	20.55	48.90
15.00	7.38	70.24	12.57	59.86	16.43	52.14	19.41	46.19
20.00	6.94	66.12	11.83	56.34	15.46	49.08	18.26	43.48
25.00	6.51	61.98	11.09	52.82	14.49	46.02	17.12	40.76

表 1 不同实验工况下气体体积分数

采用分压配气法。首先抽真空,将爆炸容器内的一部分空气抽出产生负压,接着将 CO 和 H₂ 通入球室内,直到达到预先设定的浓度,再通入一定体积的惰性气体,使压力表示数达到-0.06 MPa,此时真空表指示灯亮起。然后按下进气按钮,压缩空气储罐充气至 2 MPa 后进气按钮会自动复位。最后按下点火按钮点火,给定点火延迟时间为 60 ms。电磁阀系统在 10 ms 内触发,压缩空气储罐通过气粉两相阀在 50 ms 内将空气喷进爆炸容器中,爆炸在常压下进行。爆炸压力的变化情况通过压力传感器被记录并传送至数据采集系统。

所有实验工况均在环境压力(101.325 kPa)和温度(298 K)下进行,所使用气体的纯度均大于 99.99%。容器设有抽真空、排气、可燃气体引入和压缩空气清洗接口,在抽真空接口附近安装真空表。 通气完毕后静止 1 min,以确保球室内气体完全混合并达到静止状态。爆炸后,球室内用真空吸尘,并通 入干燥的空气进行清洗,以排除残余气体对实验的影响。对每个实验条件,进行不少于 3 次的重复测 试,保证实验的可重复性与数据的准确性。

2 实验结果与分析

2.1 添加惰性气体对爆炸压力的影响

2.1.1 添加惰性气体对爆炸压力进程的影响

由图 2 可以看出, 在相同当量比下, 惰性气体体积分数从 5% 逐渐增大到 25%, 合成气爆炸压力逐渐降低, 这说明合成气爆炸的压力曲线受到了惰性气体体积分数的剧烈影响。这主要由于随着惰性气体的添加: 一方面稀释了 20 L 容器内合成气的浓度, 降低了爆炸反应速率; 另一方面增加了爆炸球室内物质的总热容, 导致爆炸反应过程中的热量损失增加, 爆炸反应温度降低, 从而爆炸压力下降增多^[22]。当量比为 0.5 时, 添加体积分数为 25% 的 CO₂ 比添加体积分数为 20% 的 CO₂ 时, 合成气爆炸压力下降明显, 爆炸反应时间也明显延长。这主要是因为贫燃状态下, 当添加惰性气体的体积分数较高时, 爆炸容器内可燃气体浓度过低, 点火之后, 合成气爆炸反应缓慢, 爆炸反应过程中压升速率下降。添加 N₂ 时, 体积分数为 25% 时比体积分数为 20% 时的爆炸压力下降明显, 但依旧小于添加相应体积分数 CO₂ 时下降的幅度, 这说明了 CO₂ 在降低合成气爆炸压力方面优于 N₂, 且在惰性气体体积分数较高的情况下, 这种对比更明显。

2.1.2 添加惰性气体对爆炸峰值压力的影响

图 3 给出了随着混合气体中惰性气体体积分数的升高, 惰性气体(CO₂、N₂)对合成气爆炸压力峰值 的影响。可以明显看出, 在相同当量比且惰性气体体积分数相同的情况下, 添加 N₂ 时的爆炸峰值压力 始终高于添加 CO₂ 时的爆炸峰值压力。相同当量比下添加惰性气体后合成气爆炸峰值压力的下降值对 比见表 2。由表 2 可以看出, 相同当量比下, 惰性气体为 CO₂ 时的爆炸峰值压力下降值总是高于惰性气 体为 N₂ 时的爆炸峰值压力下降值。这说明不管贫燃状态还是富燃状态, 添加相同体积分数的 N₂ 和

图 2 添加惰性气体后合成气爆炸压力的变化

Fig. 2 Pressure evolution during syngas explosion with inert gas

表 2 添加惰性气体后峰值压力下降值

Table 2	Decrease of	f peak p	pressure du	ring syngas	explosion	with ine	ert gas
---------	-------------	----------	-------------	-------------	-----------	----------	---------

Φ	梅州与休	$\Delta p_{\rm max}/{ m MPa}$						
	间正(件	5%	10%	15%	20%	25%		
0.5	N ₂	0.009 37	0.021 56	0.042 67	0.053 65	0.100 34		
	CO ₂	0.025 12	0.051 37	0.077 72	0.114 30	0.153 89		
1.0	N ₂	0.002 57	0.011 98	0.028 53	0.047 04	0.062 88		
1.0	CO ₂	0.019 07	0.044 82	0.073 77	0.104 40	0.123 47		
1.5	N ₂	0.012 55	0.020 56	0.043 34	0.073 25	0.084 23		
	CO ₂	0.020 11	0.056 38	0.096 89	0.123 86	0.161 27		
2.0	N ₂	0.020 05	0.037 43	0.057 97	0.076 6	0.091 45		
	CO ₂	0.043 07	0.070 91	0.112 81	0.137 91	0.143 39		

CO₂, CO₂对降低合成气爆炸峰值压力的作用更显著。这是因为: N₂的抑制作用主要是由于其热效应,即 由于 N₂本身的热容,增加热传递中的热量损失,降低反应的温度,从而影响峰值压力的变化;而 CO₂的 热效应要高于 N₂的热效应,对合成气反应温度的降低更为明显,同时 CO₂的抑制作用不仅在于热效应, 同时还有化学动力学效应。CO₂参与的反应式为 H+O₂=O+OH, CO+OH=CO₂+H 和 H+O₂(+M)= HO₂(+M),反应中 CO₂ 作为反应物或第 3 个体参与到合成气爆炸反应中,对爆炸反应中 H 自由基的生成 具有抑制作用, H 自由基具有很高的热扩散系数,对合成气层流燃烧速度产生一定的抑制作用,从而抑 制爆炸,降低爆炸峰值压力^[22-23]。

2.2 添加惰性气体对压力到达峰值时间的影响

图 4 给出了随着惰性气体体积分数的变化,不同当量比下合成气爆炸压力到达峰值时间的变化。 从图 4 中可以看出,相同当量比下,随着惰性气体体 积分数的增大,压力到达峰值的时间逐渐延迟。这 是由于:随着惰性气体体积分数的增大,20 L 球形容 器内的氧气浓度降低,氧分子与合成气作用发生爆 炸的机率减小,一定程度上抑制了爆炸的发生,延迟 了压力到达峰值的时间^[16];另外,惰性气体体积分数 的增大,将吸收更多爆炸反应过程中释放的热量,降 低爆炸反应温度,从而使得层流燃烧速度下降。根 据压力到达峰值时间与层流燃烧速度之间的关系得 出,层流燃烧速度降低,压力到达峰值时间延迟^[24],

因此曲线整体呈现上升趋势,压力到达峰值时间逐渐增加。

在相同当量比下,添加相同体积分数的 CO₂ 和 N₂,合成气爆炸压力到达峰值时间的延迟情况见表 3。对于当量比为 0.5 时,添加 CO₂ 的体积分数从 20%增大到 25% 的过程中,延迟时间 Δ*T* 相应地从 0.015 2 s 增加到 0.027 7 s,延迟了 82.2%,

5.013.2 \$ 增加到 0.027 7 \$, 延送] 52.2 %, 添加 N₂ 的体积分数从 20% 增加到 25% 的过程中, ΔT 相应地从 0.024 8 s 增加到 0.037 6 s, 延迟了 51.61%。根据 数据对比分析可以看出, 添加相同体积 分数的 N₂ 和 CO₂, CO₂ 对压力到达峰值 时间的延迟作用总是强于 N₂ 对压力到 达峰值时间的延迟作用。这是因为, CO₂ 不仅比 N₂ 更能降低爆炸反应温度, 还由于 CO₂ 的化学动力学效应, 在减少 H 自由基的摩尔分数方面, 比 N₂ 的抑制 作用更强, 而 H 自由基具有很高的热扩 散系数, 它能影响层流燃烧速度, 从而延 长压力到达峰值的时间^[13,25]。

表 3 添加惰性气体后压力到达峰值时间的延迟

Table 3	Delay of peak pressure time during syngas explosion
	with inert gas

Φ	库州与休	$\Delta T/s$						
	们住气冲	5%	10%	15%	20%	25%		
0.5	N ₂	0.002 4	0.007 2	0.010 0	0.015 2	0.027 7		
0.5	CO_2	0.004 2	0.009 4	0.011 4	0.024 8	0.037 6		
1.0	N_2	0.004 8	0.007 8	0.012 8	0.018 0	0.022 0		
	CO_2	0.009 4	0.012 2	0.015 6	0.022 2	0.026 8		
1.5	N ₂	0.002 6	0.004 0	0.007 4	0.014 0	0.017 0		
	CO_2	0.006 4	0.009 4	0.013 2	0.016 4	0.019 5		
2.0	N ₂	0.001 8	0.004 8	0.008 6	0.014 6	0.017 5		
	CO_2	0.007 8	0.011 2	0.013 8	0.015 7	0.021 2		

2.3 添加惰性气体对爆炸指数的影响

图 5 为随着混合气体中惰性气体体积分数的升高,不同当量比下惰性气体(CO2、N2)对合成气爆炸 指数的影响。由图 5 可以明显看出,当量比为 1.5 时的爆炸指数大于当量比为 1.0 时的爆炸指数。这是 由于, 密闭容器中的爆炸指数 K 与层流燃烧速度密切相关^[26-27], 当层流燃烧速度较大时, 爆炸指数相应较 高。根据 Xie 等^[20]的研究可知,当量比为1.5时的层流燃烧速度大于当量比为1.0时的层流燃烧速度,所 以当量比为 1.5 时的爆炸指数大于当量比为 1.0 时的爆炸指数。从图 5 可以看出,随着惰性气体体积分 数的增大,爆炸指数逐渐降低,并且添加 CO,后的合成气爆炸指数总是低于添加 N,后的合成气爆炸指 数。这说明,惰性气体的添加能够减小合成气爆炸指数,有效降低合成气爆炸强度,抑制合成气爆炸,同 时 CO, 的抑爆效果优于 N,。这是因为, 添加 CO, 时对合成气爆炸反应温度的降低更显著, 同时 CO, 的 化学动力学效应对合成气层流燃烧速度的抑制作用都使得合成气爆炸反应速度降低,从而最大压力上 升速率减小,根据爆炸指数与最大压力上升速率的关系可知,爆炸指数下降,合成气爆炸猛烈程度降 低。表4为添加N,时的爆炸指数相比于添加CO,时合成气爆炸指数的差值。由表4可以看出,爆炸指 数差值随着惰性气体体积分数的上升先增大后减小,说明在体积分数为20%时,差值最大。在体积分数 为20%时,CO,的抑爆效果优于N,的特性最显著。这是由于,当惰性气体体积分数从0开始增大时,对 爆炸的抑制作用较明显,由于 CO,的抑制作用强于 N,,所以当 CO,与 N,同体积分数增加时,爆炸指数的 差值会先增大。当惰性气体体积分数足够高时,爆炸空间内合成气和氧气的浓度都较低,导致合成气爆 炸强度本身较低,此时不管用氮气还是二氧化碳都能明显抑制合成气爆炸,惰性气体种类的影响相对减 弱,所以爆炸指数的差值减小。从而使得在体积分数为20%时而非体积分数为25%时,CO,的抑爆效果 优于 N, 的特性最显著。

表 4 添加 N₂ 后爆炸指数相比于添加 CO₂ 后 爆炸指数的差值

Table 4	Difference between explosion indexes
	with N ₂ and CO ₂

	ΔΚ								
φ.	5%	10%	15%	20%	25%				
0.5	4.546 12	5.364 57	6.455 34	8.001 46	3.636 89				
1.0	5.092 24	7.546 12	10.912 15	13.641 28	10.909 22				
1.5	22.727 66	24.549 04	26.185 94	27.276 72	23.641 28				
2.0	4.546 12	8.183 02	19.095 16	30.004 39	21.822 83				

由图 5 可以看出,添加相同体积分数的惰性气体,当量比为 2.0 时的合成气爆炸指数大小接近当量 比为 1.0 时的爆炸指数。同时,由图 3 可看出,当量比为 1.5 时的爆炸峰值压力较当量比为 1.0 时的爆炸 压力有微小降低,当量比为 2.0 时爆炸峰值压力较当量比为 1.5 时的爆炸峰值压力下降幅度明显。这说 明,在较高的当量比下,惰性气体减小合成气爆炸指数,抑制合成气爆炸的作用更明显。这是由于,当量 比较高的情况下,爆炸空间内氧气的浓度及含量相对较低,添加的惰性气体又进一步稀释了爆炸容器内 的氧浓度,导致爆炸反应未完全进行,使得爆炸指数产生明显下降,从而得到更好的抑爆效果。

3 结 论

利用改进的 20 L 球形爆炸容器实验平台, 开展了不同体积分数 N₂ 与 CO₂ 作用下不同当量比合成气的爆炸实验, 研究了添加惰性气体对合成气爆炸特性的影响, 主要结论如下。

(1)随着惰性气体体积分数的增大,合成气爆炸压力逐渐降低,CO,在降低合成气爆炸压力方面的

作用优于 N,,且在惰性气体体积分数较高的情况下,这个优势更明显。

(2)相同当量比下,随着惰性气体体积分数的增大,压力到达峰值的时间逐渐延迟,合成气爆炸指数 逐渐减小,对合成气爆炸强度的抑制效果增强,并且惰性气体对合成气爆炸指数的抑制作用在较高的当 量比下更明显。

(3) CO₂ 的抑爆效果优于 N₂。添加相同体积分数的 N₂ 和 CO₂, 在延迟压力到达峰值时间、降低爆炸 峰值压力和爆炸指数方面, CO₂ 作用总是强于 N₂, 并且在体积分数为 20% 时 CO₂ 的抑爆效果优于 N₂ 的 特性最显著。

参考文献:

- JO Y D, CROWL D A. Explosion characteristics of hydrogen-air mixtures in a spherical vessel [J]. Process Safety Progress, 2010, 29(3): 216–23. DOI: 10.1002/prs.10370..
- [2] TANG C, HUANG Z, JIN C, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(1): 554–561. DOI: 10.1016/j.ijhydene.2008.10.028.
- [3] CAMMAROTA F, SARLI V D, SALZANO E, et al. Measurements of pressure and flame speed during explosions of CH₄/O₂/N₂/CO₂ mixtures [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 771–774. DOI: 10.1016/j.jlp.2016. 06.005.
- [4] BURBANO H J, PAREJA J, AMELL A A. Laminar burning velocities and flame stability analysis of H₂/CO/air mixtures with dilution of N₂ and CO₂ [J]. International Journal of Hydrogen Energy, 2011, 36(4): 3232–3242. DOI: 10.1016/j.ijhydene.2010. 11.089.
- [5] VU T M, PARK J, KWON O B, et al. Effects of diluents on cellular instabilities in outwardly propagating spherical syngas-air premixed flames [J]. International Journal of Hydrogen Energy, 2010, 35(8): 3868–3880. DOI: 10.1016/j.ijhydene.2010. 01.091.
- [6] PRATHAP C, RAY A, RAVI M R. Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H₂-CO mixtures at atmospheric condition [J]. Combustion and Flame, 2012, 159(2): 482–492. DOI: 10.1016/j.combustflame. 2011.08.006.
- [7] XIE Y, WANG J, XU N, et al. Comparative study on the effect of CO₂ and H₂O dilution on laminar burning characteristics of CO/H₂/air mixtures [J]. International Journal of Hydrogen Energy, 2014, 39(7): 3450 –3458. DOI: 10.1016/j.ijhydene. 2013.12.037.
- [8] 孙绍增,孟顺,赵义军,等. 水蒸气纯氧条件下合成气燃烧特性 [J]. 化工学报, 2015, 66(12): 5119-5126. DOI: 10.11949/j.issn.0438-1157.20150725.
 SUN Shaozeng, MENG Shun, ZHAO Yijun, et al. Combustion characteristics of syngas under oxygen steam conditions [J]. CIESC Journal, 2015, 66(12): 5119-5126. DOI: 10.11949/j.issn.0438-1157.20150725.
- [9] WANG Z H, WENG W B, HE Y, et al. Effect of H₂/CO ratio and N₂/CO₂ dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation [J]. Fuel, 2015, 141(1): 285–292. DOI: 10.1016/j.fuel.2014.10.040.
- [10] ZHANG Y, SHEN W, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
- [11] 安江涛, 蒋勇, 邱榕, 等. CO₂ 稀释及合成气构成对预混燃烧特性的影响 [J]. 燃烧科学与技术, 2011, 17(5): 437–442.
 AN Jiangtao, JIANG Yong, QIU Rong, et al. Effect of CO₂-diluted oxygen and syngas composition on characteristics of premixed flame [J]. Journal of Combustion Science and Technology, 2011, 17(5): 437–442.
- [12] MOVILEANU C, GASA V, RAZUS D. Explosion of gaseous ethylene-air mixtures in closed cylindrical vessels with central ignition [J]. Journal of Hazardous Materials, 2012, 235-236(2): 108–115. DOI: 10.1016/j.jhazmat.2012.07.028.
- [13] RAZUS D, BRINZEA V, MITU M, et al. Explosion characteristics of LPG-air mixtures in closed vessels [J]. Journal of Hazardous Materials, 2009, 165(1): 1248–1252. DOI: 10.1016/j.jhazmat.2008.10.082.
- [14] RAZUS D, MOVILEANU C, OANCEA D. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures [J]. Journal of Hazardous Materials, 2007, 139(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.103.
- [15] PHYLAKTOU H N, ANDREWS G E, HERATH P. Fast flame speeds and rates of pressure rise in the initial period of gas explosions in large *L/D* cylindrical enclosures [J]. Journal of Loss Prevention in the Process Industries, 1990, 3(4): 355–364. DOI: 10.1016/0950-4230(90)80005-U.

[16] 王颖. 20L 球形密闭装置内惰性气体抑制瓦斯爆炸实验研究 [D]. 太原: 中北大学, 2012: 22-23.

[17] 贾宝山, 温海燕, 梁运涛, 等. 煤矿巷道内 N₂ 及 CO₂ 抑制瓦斯爆炸的机理特性 [J]. 煤炭学报, 2013, 38(3): 361-366. DOI: 10.13225/j.cnki.jccs.2013.03.019.

JIA Baoshan, WEN Haiyan, LIANG Yuntao, et al. Mechanism characteristics of CO₂ and N₂ inhibiting methane explosions in coal mine roadways [J]. Journal of China Coal Society, 2013, 38(3): 361–366. DOI: 10.13225/j.cnki.jccs.2013.03.019.

- [18] LI M A, YANG X, DENG J, et al. Effect of CO₂ on explosion limits of flammable gases in goafs [J]. International Journal of Mining Science and Technology, 2010, 20(2): 193–197. DOI: 10.1016/S1674-5264(09)60183-6.
- [19] 余明高,朱新娜,裴蓓,等. 二氧化碳-超细水雾抑制甲烷爆炸实验研究 [J]. 煤炭学报, 2015, 40(12): 2843–2848. DOI: 10.13225/j.cnki.jccs.2015.0068.
 YU Minggao, ZHU Xinna, PEI Bei, et al. Experimental study on methane explosion suppression using carbon dioxide and ultra-fine water mist [J]. Journal of Coal Science Engineering, 2015, 40(12): 2843–2848. DOI: 10.13225/j.cnki.jccs.2015.0068.
- [20] XIE Y, WANG J, CAI X, et al. Pressure history in the explosion of moist syngas/air mixtures [J]. Fuel, 2016, 185: 18–25. DOI: 10.1016/j.fuel.2016.07.072.
- [21] 张迎新, 吴强, 刘传海, 等. 惰性气体 N₂/CO₂ 抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906-912. DOI: 10.11883/1001-1455(2017)05-0906-07.
 ZHANG Yingxin, WU Qiang, LIU Chuanhai, et al. Experimental study on coal mine gas explosion suppression with inert gas N₂/CO₂ [J]. Explosion and Shock Waves, 2017, 37(5): 906-912. DOI: 10.11883/1001-1455(2017)05-0906-07.
- [22] SHANG R, ZHANG Y, ZHU M, et al. Laminar flame speed of CO₂ and N₂ diluted H₂/CO/air flames [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15056–15067. DOI: 10.1016/j.ijhydene.2016.05.064.
- [23] HAN M, AI Y, CHEN Z, et al. Laminar flame speeds of H₂/CO with CO₂ dilution at normal and elevated pressures and temperatures [J]. Fuel, 2015, 148: 32–38. DOI: 10.1016/j.fuel.2015.01.083.
- [24] CHEN Z, TANG C, FU J, et al. Experimental and numerical investigation on diluted DME flames: thermal and chemical kinetic effects on laminar flame speeds [J]. Fuel, 2012, 102(3): 567–573. DOI: 10.1016/j.fuel.2012.06.003.
- [25] AUNG K T, HASSAN M I, FAETH G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure [J]. Combustion and Flame, 1997, 109(1/2): 1–24. DOI: 10.1016/S0010-2180(96)00151-4.
- [26] BRADLEY D, MITCHESON A. Mathematical solutions for explosions in spherical vessels [J]. Combustion and Flame, 1976, 26(2): 201–217. DOI: 10.1016/0010-2180(76)90072-9.
- [27] DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: the role of flame thickness in the validity of the 'cube-root law' [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(9): 33–44. DOI: 10.1016/0950-4230(95)00054-2.

Effect of inert gas addition on syngas explosion

YU Minggao^{1,2}, WEI Beibei¹, ZHENG Kai¹

(1. State Key Laboratory of Coal Mine Disaster Dynamics Control, Chongqing University, Chongqing 400044, China;
2. School of Safety Science Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China)

Abstract: In this study we investigated the effect of inert gas addition on the characteristics of the syngas explosion using 20 L spherical explosive device. Effects of different volume fraction of inert gas (CO_2/N_2) on the explosion parameters including the peak pressure, the delay of the peak pressure time, and the explosion index were obtained from the experiment. The results show that the delay of the peak pressure time of the syngas explosion rose higher, and the explosion peak pressure and the explosion index fell lower with the increase of the volume fraction of the inert gas; that CO_2 had a stronger inhibition effect on syngas explosion than N_2 because the peak pressure and the explosion index fell down more sharply with the addition of CO_2 than of N_2 . **Keywords:** syngas; explosion pressure; equivalence ratio; inert gas

(责任编辑 丁 峰)