DOI: 10.11883/bzycj-2021-0386

# CF<sub>3</sub>I和CO<sub>2</sub>抑制甲烷-空气爆炸实验研究\*

程方明<sup>1,2</sup>,南 凡<sup>1,2</sup>,肖 旸<sup>1,3</sup>,罗振敏<sup>1,2</sup>,牛巧霞<sup>1,2</sup> (1. 西安科技大学安全科学与工程学院,陕西 西安 710054; 2. 西安科技大学西安市城市公共安全与消防救援重点实验室,陕西 西安 710054; 3. 西安科技大学陕西省煤火灾害防治重点实验室,陕西 西安 710054)

摘要:为了探究三氟碘甲烷 CF<sub>3</sub>I 和二氧化碳 CO<sub>2</sub>复合使用对甲烷爆炸的抑制效果,采用容积为20L的球形爆炸 实验装置,研究了单独和复合使用三氟碘甲烷和二氧化碳对甲烷爆炸压力特性的影响。研究结果表明:添加三氟碘甲 烷和二氧化碳后,甲烷爆炸极限范围逐渐缩小,且三氟碘甲烷对甲烷爆炸极限的影响更显著,当三氟碘甲烷和二氧化 碳的体积分数分别达到5.5%和32.0%时,甲烷爆炸上下限重合,临界氧的体积分数分别为17.85%和12.50%。可见三 氟碘甲烷对甲烷爆炸极限的影响机制与二氧化碳不同,并不是通过降氧为主而发挥抑制作用的。三氟碘甲烷对甲烷 爆炸的抑制效果明显优于二氧化碳,对比体积分数为9.5%的甲烷爆炸最大爆炸压力和最大爆炸压力上升速率下降的 比率,5.0%三氟碘甲烷的抑爆效果约是等量二氧化碳的6倍和5倍。二氧化碳掺混少量三氟碘甲烷后,抑爆效果大幅 提升,掺混比例越,高效果越明显,且对抑制甲烷爆炸压力作用的提升更显著。三氟碘甲烷掺混体积分数大于等于 1.0%时,二氧化碳单位增量导致甲烷最大爆炸压力下降的幅度有所增加。这说明三氟碘甲烷的加入具有改善抑爆效 果和增强抑爆效率的双重作用。

关键词:甲烷爆炸;三氟碘甲烷;二氧化碳;爆炸压力;抑爆
中图分类号: O381; X932
国标学科代码: 13035
文献标志码: A

# Experimental study on the suppression of methane-air explosion by CF<sub>3</sub>I and CO<sub>2</sub>

CHENG Fangming<sup>1,2</sup>, NAN Fan<sup>1,2</sup>, XIAO Yang<sup>1,3</sup>, LUO Zhenmin<sup>1,2</sup>, NIU Qiaoxia<sup>1,2</sup>

School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China;
 Xi'an Key Laboratory of Urban Public Safety and Fire Rescue, Xi'an University of

Science and Technology, Xi'an 710054, Shaanxi, China;

3. Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an University of

Science and Technology, Xi'an 710054, Shaanxi, China)

**Abstract:** To explore the inhibitory effect of the combined use of trifluoroiodomethane and carbon dioxide on methane explosion, a 20-L spherical explosion experimental system was used to carry out explosion experiments under different methane volume fractions when the two were used alone and in combination. The variation law of methane explosion pressure characteristics under different working conditions was studied. The results show that after adding trifluoroiodomethane and carbon dioxide, the explosion limit of methane is gradually reduced, and the effect of trifluoroiodomethane on the explosion limit of methane is more obvious. When the volume fractions of trifluoroiodomethane and carbon dioxide reached 5.5% and 32.0%, respectively, the upper and lower explosion limits of methane coincided, and at this moment the corresponding critical

\* 收稿日期: 2021-09-15; 修回日期: 2022-04-26
 基金项目: 国家自然科学基金(52174200); 国家重点研发计划(2021YFB4000905)
 第一作者: 程方明(1982—), 男, 博士, 副教授, chengfm@xust.edu.cn
 通信作者: 南 凡(1993—), 男, 博士研究生, 1538478605@qq.com

oxygen volume fractions were 17.85% and 12.50%, respectively. The affection mechanism of trifluoroiodomethane on the explosion limit of methane is different from that of carbon dioxide, and it does not exert an inhibitory effect mainly by reducing oxygen. The inhibition effect of trifluoroiodomethane on methane explosion is significantly better than that of carbon dioxide. Compared with the decrease ratio of the maximum explosion pressure and the maximum explosion pressure rise rate of 9.5% methane, the suppression explosion effects of 5% trifluoroiodomethane are about 6 times and 5 times as strong as those of the same amount of carbon dioxide. After carbon dioxide is mixed with a small amount of trifluoroiodomethane, the suppression explosion effect is greatly improved. Furthermore, the higher ratio of adding trifluoroiodomethane, the more obvious the effect. When the volume fraction of trifluoroiodomethane is greater than or equal to 1.0%, the magnitude of the drop in the maximum explosion pressure of methane has increased due to the increment of carbon dioxide units. It is indicated that the addition of trifluoroiodomethane has the dual effect of improving the explosion suppression effect and enhancing the explosion suppression efficiency when carbon dioxide is used to suppress methane explosion.

Keywords: methane explosion; trifluoromethyl iodide; carbon dioxide; explosion pressure; explosion suppression

可燃气体爆炸破坏性强且过程难以控制,对工业安全生产造成了很大的威胁,所以可燃气体防爆工 作一直被安全工作者所重视。防止可燃气体爆炸的措施有很多,抑爆是一种相对积极有效的防爆措施<sup>[1]</sup>。 目前,国内外相关学者已经使用了多种气体抑爆剂开展了可燃气体抑爆研究,Mitu等<sup>[2]</sup>、路长等<sup>[3]</sup>、Wu等<sup>[4]</sup>、 Gao 等<sup>[5]</sup> 和 Liang 等<sup>[6]</sup> 研究了惰性气体(CO<sub>2</sub>、N<sub>2</sub>、Ar、He)对甲烷-空气爆炸极限、最大爆炸压力、最大爆 炸压力上升速率以及层流火焰传播速度等参数的抑制效果,结果表明 CO2 抑制效果最好,其次是 N2、Ar 和 He。张迎新等<sup>[7]</sup>、Wang 等<sup>[8]</sup>、Li 等<sup>[9]</sup>、Chen 等<sup>[10]</sup> 和 Di Benedetto 等<sup>[11]</sup> 研究了 N<sub>2</sub>/CO<sub>2</sub> 混合气体抑制甲 烷爆炸效果,发现随着 N<sub>2</sub>/CO,含量的升高,混合气体抑制效果越好,总体积分数一定时 CO,含量越高, 抑制效果越好,且 CO2 的吸热效果好于 N2。Zeng 等<sup>[12]</sup>、周福宝等<sup>[13]</sup>、罗振敏等<sup>[14]</sup>、Halter 等<sup>[15]</sup>、邱雁等<sup>[16]</sup> 通过实验研究和化学动力学软件 CHEMKIN 模拟研究了惰性气体的抑制机理,得出 CO,的抑制机理包 括稀释、热扩散和化学效应,稀释效果占主导地位, N,、Ar、He 主要由稀释效果来达到抑制效果, 热扩散 和化学效应基本可以忽略。Pagliaro等<sup>[17]</sup>开展了卤代烃气体抑爆剂对甲烷-空气爆炸的抑制实验研究, 发现加入少量的 C<sub>6</sub>F<sub>12</sub>O 和 C<sub>2</sub>HF<sub>5</sub> 会增加甲烷爆炸火焰传播速度和爆炸压力, 加入少量的 C<sub>3</sub>H<sub>2</sub>F<sub>3</sub>Br 会增 加火焰传播速度, CF, Br 能起到抑制甲烷爆炸压力和火焰传播的效果。Williams 等[18]、薛少谦等[19] 和李 一鸣等[20]研究了七氟丙烷对甲烷爆炸的抑制作用,结果表明加入较低体积分数的七氟丙烷对甲烷爆炸 能起到促进作用,七氟丙烷体积分数较高时能起到抑制作用,七氟丙烷与惰性气体复合使用能起到协同 增效的抑制效果。詹平等<sup>[21]</sup>通过实验研究了 CF<sub>4</sub>I 对制冷剂 R290 的抑制效果,得到 CF<sub>4</sub>I 能明显降低 R290 爆炸危险性的相关结论。Mathieu 等<sup>[22]</sup>、Luo 等<sup>[23]</sup> 和 Babushok 等<sup>[24]</sup> 研究了 CF<sub>3</sub>I 对 CH<sub>4</sub> 爆炸的抑制 效果,并对 CF,I 抑制甲烷爆炸基元反应步骤进行了分析,指出添加一定体积分数的 CF,I 可以通过 HI → I→HI等循环反应抑制甲烷爆炸产生的关键自由基,从而降低甲烷的层流火焰燃烧速度。Luo等[25]、 Noto 等<sup>[26]</sup>研究了 CF<sub>4</sub>I、CF<sub>4</sub>Br 以及 CF<sub>4</sub>对甲醇、甲烷等可燃气体火焰传播的抑制作用,发现 CF<sub>4</sub>I 对于甲 醇-空气火焰传播的抑制效果好于 CF,Br, CF,I 对于甲烷-空气火焰传播的抑制效果仅次于 CF,Br。

根据已有研究可知, CO<sub>2</sub>和 CF<sub>3</sub>I 对甲烷-空气爆炸都有较好的抑制效果。这 2 种物质常温常压下均 为气态, 且化学性质较稳定, 相互之间不发生反应, 混合使用具有可行性。同时, CO<sub>2</sub> 作为气体灭火剂已 经被广泛应用于消防灭火, 三氟碘甲烷无色、无味, 温室效应潜值(global warming potential, GWP)小于 5, 臭氧层破坏潜能(ozone depletion potential, ODP)小于 0.008, 作为一种环境友好型卤代烃气体, 具有灭火 效率高、安全性能好等特点, 被国内外学者高度关注<sup>[27-30]</sup>。但 CF<sub>3</sub>I 对可燃气体爆炸压力抑制效果尚不完 全清楚, 同时三氟碘甲烷的成本较高。而 CO<sub>2</sub> 成本较低, 可是抑制气体爆炸所需体积分数较高, 复合使 用 CF<sub>3</sub>I 和 CO<sub>2</sub> 进行抑爆可能是提高性价比的一种方式, 但目前缺乏相关实验数据和理论依据。基于此, 本文中拟采用容积为 20 L 的球形爆炸实验装置, 实验研究 CO<sub>2</sub> 掺混少量 CF<sub>3</sub>I 复合使用时对甲烷爆炸压 力的抑制作用, 以期在考虑成本的同时提高抑爆效果, 为开发高效环保的气相复合抑爆剂提供参考。

# 1 实验设计

# 1.1 实验装置

采用标准的 20 L 球形爆炸实验装置进行实验,实验装置如图 1 所示,主要由多通道配气系统、点火 系统以及数据采集系统等组成。多通道配气系统由电磁阀控制自动进气,采用分压法配气,最多同时可 以进入 4 种气体,配气精度为 0.1%。点火系统输出电压为 15 kV,点火持续时间为 300 ms,点火电极间距 为 3 mm,位置在 20 L 球形实验装置的几何中心。使用高频压力传感器检测爆炸过程动态压力,量程为 -1~2 MPa,数据采集间隔时间为 0.2 ms,误差为 0.1 kPa。实验初始条件为常温常压,系统配气完成后静 置 300 s 点火,以消除湍流的影响,并确保混合均匀。





(b) The 20-L spherical explosion vessel used

图 1 实验装置 Fig. 1 The experimental device

# 1.2 实验工况

采用渐近法测试了纯甲烷的爆炸极限,以及分别添加(0~5.0)%的三氟碘甲烷和(0~32.0)%的二氧化碳与甲烷混合,测试加入不同体积分数的三氟碘甲烷或二氧化碳对甲烷爆炸极限的影响。每次增加或减少甲烷的体积分数为0.1%,依据美国标准材料实验协会ASTM给出的实验判据,当压力上升大于7%时,即认为爆炸,否则为不爆。再根据测试得到的爆炸极限结果,选择不同体积分数三氟碘甲烷和二氧化碳工况见表1中工况1~13,抑制9.5%的甲烷爆炸。单独使用三氟碘甲烷或二氧化碳开展抑爆实验的工况见表1中工况1~13,二氧化碳掺混体积分数为0.5%、1.0%和1.5%的三氟碘甲烷后开展复合抑爆实验的工况见表1中工况1~29。

| 编号 | 工况                                         | 编号 | 工况                                                              | 编号 | 工况                                                              |
|----|--------------------------------------------|----|-----------------------------------------------------------------|----|-----------------------------------------------------------------|
| 1  | 9.5%CH <sub>4</sub>                        | 11 | 9.5%CH <sub>4</sub> +15.0%CO <sub>2</sub>                       | 22 | 9.5%CH <sub>4</sub> +1.0%CF <sub>3</sub> I+14.0%CO <sub>2</sub> |
| 2  | 9.5%CH <sub>4</sub> +0.5%CF <sub>3</sub> I | 12 | 9.5%CH <sub>4</sub> +20.0%CO <sub>2</sub>                       | 23 | 9.5%CH <sub>4</sub> +1.0%CF <sub>3</sub> I+19.0%CO <sub>2</sub> |
| 3  | 9.5%CH <sub>4</sub> +1.0%CF <sub>3</sub> I | 13 | 9.5%CH <sub>4</sub> +25.0%CO <sub>2</sub>                       | 24 | 9.5%CH <sub>4</sub> +1.0%CF <sub>3</sub> I+24.0%CO <sub>2</sub> |
| 4  | 9.5%CH <sub>4</sub> +1.5%CF <sub>3</sub> I | 14 | 9.5%CH <sub>4</sub> +0.5%CF <sub>3</sub> I+4.5%CO <sub>2</sub>  | 25 | 9.5%CH <sub>4</sub> +1.5%CF <sub>3</sub> I+3.5%CO <sub>2</sub>  |
| 5  | 9.5%CH <sub>4</sub> +2.0%CF <sub>3</sub> I | 15 | 9.5%CH <sub>4</sub> +0.5%CF <sub>3</sub> I+9.5%CO <sub>2</sub>  | 26 | 9.5%CH <sub>4</sub> +1.5%CF <sub>3</sub> I+8.5%CO <sub>2</sub>  |
| 6  | 9.5%CH <sub>4</sub> +3.0%CF <sub>3</sub> I | 16 | 9.5%CH <sub>4</sub> +0.5%CF <sub>3</sub> I+14.5%CO <sub>2</sub> | 27 | 9.5%CH <sub>4</sub> +1.5%CF <sub>3</sub> I+13.5%CO <sub>2</sub> |
| 7  | 9.5%CH <sub>4</sub> +4.0%CF <sub>3</sub> I | 17 | 9.5%CH <sub>4</sub> +0.5%CF <sub>3</sub> I+19.5%CO <sub>2</sub> | 28 | 9.5%CH <sub>4</sub> +1.5%CF <sub>3</sub> I+18.5%CO <sub>2</sub> |
| 8  | 9.5%CH <sub>4</sub> +5.0%CF <sub>3</sub> I | 18 | 9.5%CH <sub>4</sub> +0.5%CF <sub>3</sub> I+24.5%CO <sub>2</sub> | 29 | 9.5%CH <sub>4</sub> +1.5%CF <sub>3</sub> I+23.5%CO <sub>2</sub> |
| 9  | 9.5%CH <sub>4</sub> +5.0%CO <sub>2</sub>   | 19 | 9.5%CH <sub>4</sub> +1.0%CF <sub>3</sub> I+4.0%CO <sub>2</sub>  |    |                                                                 |
| 10 | 9.5%CH <sub>4</sub> +10.0%CO <sub>2</sub>  | 21 | 9.5%CH <sub>4</sub> +1.0%CF <sub>3</sub> I+9.0%CO <sub>2</sub>  |    |                                                                 |

表 1 实验工况 Table 1 Experimental conditions

# 2 结果与讨论

#### 2.1 三氟碘甲烷和二氧化碳对甲烷爆炸极限的影响

实验测得纯甲烷的爆炸极限是 5.05%~16.35%。根据图 2 可以看出,随着三氟碘甲烷和二氧化碳体 积分数的逐渐上升,甲烷爆炸上限逐渐降低,爆炸下限逐渐上升,当加入的三氟碘甲烷体积分数达到 5.5% 或二氧化碳体积分数达到 32.0% 时,甲烷爆炸上下限重合。可以看出,加入三氟碘甲烷和二氧化碳 对甲烷爆炸极限起到了较好的抑制作用,三氟碘甲烷抑制下的甲烷爆炸极限范围明显比二氧化碳抑制 下的爆炸极限范围小,临界体积分数仅为二氧化碳的 17.2%,说明三氟碘甲烷对甲烷爆炸极限的影响更 为显著。另外可以发现,当二氧化碳达到 32.0% 时,氧含量降到 12.5%,甲烷被完全惰化失爆,此时的氧 气体积分数明显低于纯甲烷爆炸极限上下限对应的氧气体积分数(17.6% 和 19.9%)。当三氟碘甲烷体积 分数达到 5.5% 时,氧气体积分数为 17.85%,甲烷爆炸就被完全抑制住了,此时的氧气体积分数小于纯甲 烷爆炸下限对应的氧气体积分数(19.9%),但大于纯甲烷爆炸上限对应的氧气体积分数(17.6%)。说明 二氧化碳对甲烷爆炸极限的影响主要以降低氧气体积分数的惰化作用为主,而三氟碘甲烷对甲烷爆炸 极限的影响并不是以降氧为主而发挥抑制作用的。





由图 3 可以看出, 二氧化碳和三氟碘甲烷比定容热容随温度升高而升高。这说明, 二氧化碳和三氟 碘甲烷在点火引爆过程中可以吸收一定的热量, 降低点火中心的体系温度, 在一定程度上抑制甲烷爆炸 的引发。相同条件下, 三氟碘甲烷的比定容热容约是二氧化碳的 2 倍, 同时三氟碘甲烷受热后易分解也 可以吸收一定的热量<sup>[31-32]</sup>。可见, 三氟碘甲烷的吸热作用明显优于二氧化碳。因此, 三氟碘甲烷对甲烷 爆炸极限抑制效果更好, 能在氧气体积分数较高的情况下抑制住甲烷爆炸。





Fig. 3 Specific heat capacity at constant volume of CF<sub>3</sub>I and CO<sub>2</sub>

#### 2.2 单组分三氟碘甲烷和二氧化碳对甲烷爆炸压力参数的影响

根据甲烷爆炸极限测定结果,选取不同体积分数的三氟碘甲烷和二氧化碳,测试单组分抑爆剂对 9.5% 甲烷爆炸压力的影响,如图 4 所示。由图 4 可以看出,加入三氟碘甲烷和二氧化碳后,甲烷爆炸压 力均有一定程度的降低,且随着抑爆剂体积分数的逐渐升高,最大爆炸压力逐渐降低,最大爆炸压力出 现时刻逐渐延迟,爆炸压力曲线逐渐变得平缓。这说明,三氟碘甲烷和二氧化碳对甲烷爆炸压力有较好 的抑制作用。





图 5 为加入 (1.0~5.0)% 的三氟碘甲烷和加入 (5.0~25.0)% 的二氧化碳对 9.5% 的甲烷爆炸压力特 性参数影响情况统计。图中下侧横坐标为二氧化碳体积分数变化,上侧横坐标为三氟碘甲烷体积分数 变化,图中虚线代表三氟碘甲烷抑制下的各参数曲线,实线代表二氧化碳抑制下的各参数曲线。t,为达 到最大爆炸压力所用的时间, t. 为达到最大爆炸压力上升速率所用的时间。由图 5 可以看出, 加入不同 体积分数的三氟碘甲烷和二氧化碳后,随着抑爆剂体积分数的升高,体积分数为9.5%的甲烷最大爆炸 压力和最大爆炸压力上升速率逐渐降低,达到最大爆炸压力和最大爆炸压力上升速率所用的时间延 长。同时,可以发现,加入(1.0~5.0)%的三氟碘甲烷对9.5%的甲烷爆炸压力参数的抑制效果明显优于 加入 (5.0~25.0)% 的二氧化碳的抑制效果,如 5.0% 的三氟碘甲烷可将体积分数为 9.5% 的甲烷最大爆炸 压力和最大爆炸压力上升速率分别降低 45.0% 和 94.2%, 与 5.0% 的二氧化碳相比, 分别约为二氧化碳的



(a) Maximum explosion pressure and its arrival time





6 倍和 5 倍,即使与 25.0% 的二氧化碳相比,用量仅为 20.0%,但最大爆炸压力的下降比率仍为二氧化碳 的 2.3 倍,最大爆炸压力上升速率下降比率为二氧化碳的 1.67 倍。

气体抑爆剂一般是通过降氧惰化、吸热冷却和消除关键自由基等方式来发挥抑爆作用的。首先,加入气体抑爆剂,进入装置内的空气量减少,氧气体积分数下降,导致甲烷爆炸反应不充分。其次,甲烷爆 炸后容器内温度升高,二氧化碳和三氟碘甲烷比定容热容随着温度的升高逐渐升高能起到吸热作用,而 三氟碘甲烷的比定容热容约为二氧化碳的2倍,同时三氟碘甲烷受热分解也是吸热反应,因此抑爆过程 三氟碘甲烷的吸热作用比二氧化碳更强。另外,二氧化碳是甲烷爆炸反应的主要产物之一,加入二氧化 碳之后将导致甲烷燃烧支链 CO+OH ⇄ H+CO<sub>2</sub> 等反应速率降低,从而阻碍甲烷爆炸链式反应的进行<sup>[3]</sup>。 三氟碘甲烷受热分解会产生氟、碘等离子,氟、碘等离子具有很强的还原性<sup>[31]</sup>,能与甲烷爆炸过程中产生 的 H·、HO·等关键自由基发生反应<sup>[23-24]</sup>,进而阻断甲烷爆炸的链式反应,起到显著的化学抑爆作用。因 此,与二氧化碳相比,三氟碘甲烷对甲烷爆炸压力的抑制效果十分显著。

#### 2.3 三氟碘甲烷与二氧化碳复合抑爆剂对甲烷爆炸压力参数的影响

图 6 为甲烷体积分数为 9.5% 时, 二氧化碳掺混三氟碘甲烷后形成的复合抑爆剂对甲烷爆炸压力参数的影响。由图 6 可见, 随着抑爆剂体积分数的升高, 最大爆炸压力和最大爆炸压力上升速率逐渐降低。当抑爆剂总体积分数一定时, 掺混少量三氟碘甲烷后, 最大爆炸压力和最大爆炸压力上升速率均比单独使用二氧化碳抑爆时有所降低, 且掺混比例越高下降幅度越大。例如: 加入 25.0% 的二氧化碳时, 甲烷最大爆炸压力、最大爆炸压力上升速率分别下降了 19.5% 和 56.4%; 掺混 0.5%、1.0% 和 1.5% 的三氟碘甲烷形成复合抑爆剂, 同样使用 25.0% 的抑爆剂时, 甲烷最大爆炸压力分别下降了 28.0%、40.4% 和 50.3%, 最大爆炸压力上升速率分别下降了 67.12%、77.9% 和 89.8%。可见, 掺混少量三氟碘甲烷后抑爆效果显著提高, 且掺混比例越高效果越明显。另外, 总体看来, 气体抑爆剂降低爆炸压力上升速率的作用比削弱爆炸压力峰值更显著, 说明气体抑爆剂的加入对爆炸反应体系热量的快速释放影响更敏感, 同时也减少了放热总量。若采用最大爆炸压力和最大爆炸压力上升速率下降的比率来表征抑爆效果, 25.0% 的二氧化碳掺混 1.5% 的三氟碘甲烷后, 其抑爆效果分别提升了 158% 和 59.2%。可见, 掺混三氟碘甲烷对二氧化碳抑制甲烷爆炸压力作用的提升更显著。这说明, 少量三氟碘甲烷的加入明显增强了抑爆剂对整个体系放热总量的减少作用。



图 6 复合抑爆剂对 9.5% 的 CH<sub>4</sub> 爆炸压力参数的影响

Fig. 6 Effect of compound explosion suppressor on explosion pressure parameters of 9.5%  $CH_4$ 

由图 6 还可以看出,单独使用二氧化碳抑爆时,甲烷爆炸压力参数随着二氧化碳体积分数的升高均 呈线性单调下降。掺混三氟碘甲烷后,在抑爆剂体积分数为 5.0% 时均出现了拐点,因后续抑爆剂的增 加并未改变三氟碘甲烷掺混量,仅为二氧化碳体积分数的升高,所以在 (5.0~25.0)% 范围内随着抑爆剂 体积分数的升高,甲烷爆炸压力参数仍呈线性下降规律。从图 6(a) 可以发现: 掺混 0.5% 的三氟碘甲烷 时,随着二氧化碳体积分数的进一步升高,甲烷最大爆炸压力下降的趋势与单独使用二氧化碳抑爆时基本一致,2条趋势曲线几乎平行;但三氟碘甲烷掺混体积分数大于等于1.0%时,趋势曲线的斜率增大,这说明,二氧化碳单位增量导致甲烷最大爆炸压力下降的幅度增大。可见,三氟碘甲烷的加入不但提高了抑爆效果,还增强了抑爆效率,但只有三氟碘甲烷的体积分数达到某一临界量后,才会产生这种复合增效作用。但是图 6(b)中对甲烷最大爆炸压力上升速率的抑制,并未出现这种增效现象,掺混(0.5~1.5)%的三氟碘甲烷后,随着抑爆剂体积分数的升高,甲烷最大爆炸压力上升速率下降趋势基本一致。这种增效现象的出现,是二氧化碳降氧抑制作用和三氟碘甲烷吸热与关键自由基消减作用的综合体现。随着三氟碘甲烷添加量的增大,甲烷爆炸反应体系中 H·、HO·等关键自由基会逐渐减少<sup>[23-24]</sup>,二氧化碳的增加和氧气的减少对某些关键基元反应成抑制作用可能会随之增强,进而阻碍了链反应传递,减少了反应放热。

# 3 结 论

(1) 三氟碘甲烷对甲烷爆炸极限的影响显著, 当三氟碘甲烷体积分数达到 5.5% 时, 甲烷爆炸上下限 重合, 临界氧体积分数为 17.85%, 三氟碘甲烷对气体爆炸极限的影响机制与二氧化碳不同, 并不是以降 氧为主而发挥抑制作用的。

(2)随着三氟碘甲烷和二氧化碳体积分数的升高,9.5%的甲烷最大爆炸压力和最大爆炸压力上升速 率逐渐降低,达到最大爆炸压力和最大爆炸压力上升速率所用的时间延迟。三氟碘甲烷对甲烷爆炸的 抑制效果明显优于二氧化碳,通过对比最大爆炸压力和最大爆炸压力上升速率下降的比率,5.0%三氟碘 甲烷的抑爆能力约是等量二氧化碳的6倍和5倍。

(3) 二氧化碳掺混少量三氟碘甲烷后,抑爆效果大幅提升,掺混比例越高,效果越明显,且对抑制甲 烷爆炸压力作用的提升更显著。三氟碘甲烷掺混体积分数大于等于1.0%时,二氧化碳单位增量导致甲 烷最大爆炸压力下降的幅度有所增大。这说明,三氟碘甲烷的加入不但提高了抑爆效果,还具有增效 作用。

#### 参考文献:

[1] 张景林. 气体、粉尘爆炸灾害及其安全技术 [J]. 中国安全科学学报, 2002, 12(5): 9-14. DOI: 10.16265/j.cnki.issn1003-3033.2002.05.003.

ZHANG J L. Explosion disaster due to gas & dust and its safety technology [J]. China Safety Science Journal, 2002, 12(5): 9–14. DOI: 10.16265/j.cnki.issn1003-3033.2002.05.003.

- [2] MITU M, PRODAN M, GIURCAN V, et al. Influence of inert gas addition on propagation indices of methane-air deflagrations [J]. Process Safety and Environmental Protection, 2016, 102: 513–522. DOI: 10.1016/j.psep.2016.05.007.
- [3] 路长,刘洋, 王鸿波,等. CO<sub>2</sub>、H<sub>2</sub>对 CH<sub>4</sub>/Air 预混气爆炸特性的影响 [J]. 安全与环境学报, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
   LU C, LIU Y, WANG H B, et al. Experimental study of the effects of CO<sub>2</sub>/H<sub>2</sub> on the characteristic features of methane/air bursts [J]. Journal of Safety and Environment, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
- [4] WU S Y, LIN N K, SHU C M. Effects of flammability characteristics of methane with three inert gases [J]. Process Safety Progress, 2010, 29(4): 349–352. DOI: 10.1002/prs.10411.
- [5] GAO H B, QU Z G, TAO W Q, et al. Experimental investigation of methane/(Ar, N<sub>2</sub>, CO<sub>2</sub>)-air mixture combustion in a twolayer packed bed burner [J]. Experimental Thermal and Fluid Science, 2013, 44: 599–606. DOI: 10.1016/j.expthermflusci. 2012.08.023.
- [6] LIANG Y T, ZENG W, HU E J. Experimental study of the effect of nitrogen addition on gas explosion [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 1–9. DOI: 10.1016/j.jlp.2012.08.002.
- [7] 张迎新,吴强,刘传海,等. 惰性气体 N<sub>2</sub>/CO<sub>2</sub> 抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.

ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N<sub>2</sub>/CO<sub>2</sub> [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.

- [8] WANG Z R, NI L, LIU X, et al. Effects of N<sub>2</sub>/CO<sub>2</sub> on explosion characteristics of methane and air mixture [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 10–15. DOI: 10.1016/j.jlp.2014.06.004.
- [9] LI M H, XU J C, WANG C J, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N<sub>2</sub>/CO<sub>2</sub> in a closed compartment [J]. Fuel, 2019, 255: 115747. DOI: 10.1016/j.fuel.2019.115747.
- [10] CHEN D G, YAO Y, DENG Y J. The influence of N<sub>2</sub>/CO<sub>2</sub> blends on the explosion characteristics of stoichiometric methaneair mixture [J]. Process Safety Progress, 2019, 38(2): e12015. DOI: 10.1002/prs.12015.
- [11] DI BENEDETTO A, DI SARLI V, SALZANO E, et al. Explosion behavior of CH<sub>4</sub>/O<sub>2</sub>/N<sub>2</sub>/CO<sub>2</sub> and H<sub>2</sub>/O<sub>2</sub>/N<sub>2</sub>/CO<sub>2</sub> mixtures [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970–6978. DOI: 10.1016/j.ijhydene.2009.05.120.
- [12] ZENG W, MA H, LIANG Y T, et al. Experimental and modeling study on effects of N<sub>2</sub> and CO<sub>2</sub> on ignition characteristics of methane/air mixture [J]. Journal of Advanced Research, 2015, 6(2): 189–201. DOI: 10.1016/j.jare.2014.01.003.
- [13] 周福宝, 王德明, 章永久, 等. 含氮气三相泡沫惰化火区的机理及应用研究 [J]. 煤炭学报, 2005, 30(4): 443-446. DOI: 10.3321/j.issn:0253-9993.2005.04.008.
   ZHOU F B, WANG D M, ZHANG Y J, et al. Inerting mechanism of three-phase foam containing nitrogen and its application to underground fire zone [J]. Journal of China Coal Society, 2005, 30(4): 443-446. DOI: 10.3321/j.issn:0253-9993.2005. 04.008.
- [14] 罗振敏, 康凯. CO<sub>2</sub>抑制甲烷-空气链式爆炸微观机理的仿真分析 [J]. 中国安全科学学报, 2015, 25(5): 42-48. DOI: 10.16265/j.cnki.issn1003-3033.2015.05.008.
   LUO Z M, KANG K. Simulative analysis of microscopic mechanism of CO<sub>2</sub> inhibiting methane-air chain explosion [J]. China Safety Science Journal, 2015, 25(5): 42-48. DOI: 10.16265/j.cnki.issn1003-3033.2015.05.008.
- [15] HALTER F, FOUCHER F, LANDRY L, et al. Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames [J]. Combustion Science & Technology, 2009, 181(6): 813–827. DOI: 10.1080/00102200902864662.
- [16] 邱雁,高广伟,罗海珠.充注惰气抑制矿井火区瓦斯爆炸机理 [J].煤矿安全, 2003, 34(2): 8–11. DOI: 10.3969/j.issn.1003-496X.2003.02.005.
   QIU Y, GAO G W, LUO H Z. Mechanism of pumping inert gas into mine fire area for inhibition of methane explosion [J]. Safety in Coal Mines, 2003, 34(2): 8–11. DOI: 10.3969/j.issn.1003-496X.2003.02.005.
- [17] PAGLIARO J L, LINTERIS G T, SUNDERLAND P B, et al. Combustion inhibition and enhancement of premixed methaneair flames by halon replacements [J]. Combustion and Flame, 2015, 162(1): 41–49. DOI: 10.1016/j.combustflame.2014. 07.006.
- [18] WILLIAMS B A, L'ESPÉRANCE D M, FLEMING J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling [J]. Combustion & Flame, 2000, 120(1/2): 160–172. DOI: 10.1016/S0010-2180(99)00081-4.
- [19] 薛少谦. 七氟丙烷抑制甲烷空气预混气体爆炸的实验研究 [J]. 矿业安全与环保, 2017, 44(1): 5-8. DOI: 10.3969/j.issn. 1008-4495.2017.01.002.
   XUE S Q. Experimental research on premixed methane-air explosion suppression with heptafluoropropane [J]. Mining Safety & Environmental Protection, 2017, 44(1): 5-8. DOI: 10.3969/j.issn.1008-4495.2017.01.002.
- [20] 李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究 [D]. 辽宁大连: 大连理工大学, 2018.
- LI Y M. Experimental study of suppressing the methane/air explosion by heptafluoropropane [D]. Dalian, Liaoning, China: Dalian University of Technology, 2018.
- [21] 詹平, 钱华, 刘大斌, 等. CF<sub>3</sub>I 对 R290 的抑爆性能研究 [J]. 工业安全与环保, 2018, 44(9): 49-51. DOI: 10.3969/j.issn.1001-425X.2018.09.013.

ZHAN P, QIAN H, LIU D B, et al. Study of the explosion suppression performance of CF<sub>3</sub>I on R290 [J]. Industrial Safety and Environmental Protection, 2018, 44(9): 49–51. DOI: 10.3969/j.issn.1001-425X.2018.09.013.

- [22] MATHIEU O, GOULIER J, GOURMEL F, et al. Experimental study of the effect of CF<sub>3</sub>I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane [J]. Proceedings of the Combustion Institute, 2015, 35(3): 2731–2739. DOI: 10.1016/j.proci.2014.05.096.
- [23] LUO C M, DLUGOGORSKI B, KENNEDY E, et al. Inhibition of premixed methane-air flames with CF<sub>3</sub>I [J]. Chemical

Product and Process Modeling, 2009, 4(3): Article 12. DOI: 10.2202/1934-2659.1448.

- [24] BABUSHOK V, NOTO T, BURGESS D R F, et al. Influence of CF<sub>3</sub>I, CF<sub>3</sub>Br, and CF<sub>3</sub>H on the high-temperature combustion of methane [J]. Combustion and Flame, 1996, 107(4): 351–367. DOI: 10.1016/S0010-2180(96)00052-1.
- [25] LUO C M, DLUGOGORSKI B Z, KENNEDY E M. Influence of CF<sub>3</sub>I and CBrF<sub>3</sub> on methanol-air and methane-air premixed flames [J]. Fire Technology, 2008, 44(3): 221–237. DOI: 10.1007/s10694-007-0033-5.
- [26] NOTO T, BABUSHOK V, BURGESS D R JR, et al. Effect of halogenated flame inhibitors on C<sub>1</sub>-C<sub>2</sub> organic flames [J]. Symposium (International) on Combustion, 1996, 26(1): 1377–1383. DOI: 10.1016/S0082-0784(96)80357-2.
- [27] 段远源, 史琳, 朱明善, 等. 三氟碘甲烷 (CF<sub>3</sub>I) 的热物理性质 [J]. 清华大学学报 (自然科学版), 2000, 40(6): 60-63. DOI: 10.3321/j.issn:1000-0054.2000.06.018.
   DUAN Y Y, SHI L, ZHU M S, et al. Thermophysical properties of trifluoroiodomethane (CF<sub>3</sub>I) [J]. Journal of Tsinghua
- University (Science and Technology), 2000, 40(6): 60–63. DOI: 10.3321/j.issn:1000-0054.2000.06.018.
   [28] 吕咏梅. 三氟碘甲烷合成与应用进展 [J]. 有机氟工业, 2010(1): 33–35.
   LV Y M. Progress in the application of trifluoroiodomethane [J]. Organo-Fluorine Industry, 2010(1): 33–35.
- [29] 周黎旸. 三氟碘甲烷应用进展 [J]. 化工生产与技术, 2009, 16(4): 5-6. DOI: 10.3969/j.issn.1006-6829.2009.04.002.
   ZHOU L Y. Application progress of trifluoromethyl iodide [J]. Chemical Production and Technology, 2009, 16(4): 5-6. DOI: 10.3969/j.issn.1006-6829.2009.04.002.
- [30] 陶贤文, 李绯, 袁国清, 等. CF<sub>3</sub>I 气体自动灭火系统在外浮顶油罐中的应用 [J]. 油气田地面工程, 2016, 35(4): 1–3; 7. DOI: 10.3969/j.issn.1006-6896.2016.4.001.
   TAO X W, LI F, YUAN G Q, et al. Application of CF<sub>3</sub>I automatically suppression system on open-top floating roof tanks [J]. Oil-Gas Field Surface Engineering, 2016, 35(4): 1–3; 7. DOI: 10.3969/j.issn.1006-6896.2016.4.001.
- [31] 蔡凡一, 薛健, 谭东现, 等. 三氟碘甲烷在有功负载电流下分解特性研究 [J]. 云南电力技术, 2019, 47(4): 8–12; 25. DOI: 10.3969/j.issn.1006-7345.2019.04.002.
   CAI F Y, XUE J, TAN D X, et al. Decomposition products analysis of trifluoroiodomethane (CF<sub>3</sub>I) under load current interruption [J]. Yunnan Electric Power, 2019, 47(4): 8–12; 25. DOI: 10.3969/j.issn.1006-7345.2019.04.002.
- [32] 邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学 (上册) [M]. 4 版. 北京: 北京大学出版社, 2016.
   XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry (I) [M]. 4th ed. Beijing, China: Peking University Press, 2016.

(责任编辑 张凌云)