2020年  40卷  第12期

202012FM 目录
2020, 40(12): .
摘要:
2020 年 12 期目录
2020, (12): 1-2.
摘要:
专题:混凝土结构抗爆性能
混凝土高压状态方程实验与数值模拟研究
孙玉祥, 王杰, 武海军, 周婕群, 李金柱, 皮爱国, 黄风雷
2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002
摘要:
为研究高压下混凝土冲击压缩特性以及确定HJC本构模型状态方程参数,采用\begin{document}$\varnothing $\end{document}58 mm火炮加载技术和多普勒探针系统(Doppler probe system,DPS)测速技术,对抗压强度为26.5 MPa(C25)和42.1 MPa(C40)的混凝土进行反向平板撞击实验研究与数值模拟。DPS探针记录TU1无氧铜靶自由面粒子速度历史,根据一维应变弹塑性波理论,计算撞击压力,拟合得到2~11 GPa高压条件下混凝土波速与粒子速度(us-up)、压力与体积应变(p-μ)关系。实验结果表明:高压条件下,混凝土波速-粒子速度呈线性关系;两种初始密度、孔隙率相近,强度不同的混凝土波速-粒子速度、压力-体积应变关系存在明显差异,相同压力下,混凝土试件强度越高,体积应变越小。基于实验结果,确定了两种强度混凝土HJC本构模型状态方程参数,利用LS-DYNA动力有限元分析软件对平板撞击实验进行了数值模拟,靶板自由面粒子速度历史与实验曲线吻合较好,仿真结果表明混凝土中冲击波的追赶卸载现象仅存在于低速撞击条件下。
POZD涂层方形钢筋混凝土板抗接触爆炸试验研究
汪维, 杨建超, 汪剑辉, 高伟亮, 王幸
2020, 40(12): 121402. doi: 10.11883/bzycj-2020-0180
摘要:
为研究聚异氰氨酸酯噁唑烷聚合物高分子材料(polyisocyanate oxazodone,POZD)涂层方形钢筋混凝土板在接触爆炸作用下的破坏模式和抗爆性能,对POZD涂层方形钢筋混凝土板进行接触爆炸条件下试验研究。试验中采用建筑结构中楼面设计常用的钢筋混凝土板为研究对象,通过11次独立的爆炸试验,分析了不同POZD涂层厚度对抗爆性能的影响,观测了钢筋混凝土板在不同装药量和不同POZD涂层厚度条件下的破坏模式和破坏特征,研究结果表明:涂层POZD钢筋混凝土板的主要破坏模式为钢筋混凝土板正面爆炸成坑,背面POZD涂层的圆锥状鼓起。POZD涂层鼓起主要是在爆炸冲击波作用下POZD涂层从基体板脱离并出现较大塑性变形所致。当冲击波荷载强度超过POZD材料的极限抗拉强度时,在涂层锥尖处形成较小的圆孔装剪切破坏,涂层的其他区域保持完好,从而让钢筋混凝土板不会产生较大范围的震塌破坏。在强冲击波荷载作用下利用POZD涂层仍然能够保持大变形、高塑性特性,可以通过自身的大变形很好地延长爆炸荷载的作用时间和耗散时间,吸收较大冲击波能量,从而约束混凝土震塌碎片,提高钢混混凝土板的抗爆性能。随着POZD涂层厚度增加,板的抗接触爆炸作用下的抗爆能力越强,临界震塌破坏装药量越多。研究结果可为工程应用及毁伤评估提供参考。
单钢板混凝土剪力墙抗爆性能研究
赵春风, 卢欣, 何凯城, 张增德, 王静峰, 李晓杰
2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058
摘要:
钢板混凝土剪力墙作为一种新型的抗侧力构件,具有良好的耗能能力和抗冲击性能,已逐渐应用于建筑工程结构的抗震和防护结构的抗爆设计。设计了3个试件,分别为普通钢筋混凝土板、单侧钢板混凝土板和夹心钢板混凝土板,开展了钢板混凝土剪力墙的接触爆炸试验,并通过非线性程序LS-DYNA建立了3个钢板混凝土剪力墙试件的数值模型,对比分析了不同试件在接触爆炸作用下的动态响应、破坏模式和抗爆性能。试验和数值分析结果表明:接触爆炸作用下,试验设计的3种试件呈现3种破坏模式;普通钢筋混凝土板中部发生混凝土贯穿破坏,钢筋发生较大弯曲变形;单侧钢板混凝土板由于栓钉拔出发生钢板和混凝土分离,丧失整体性和继续承载能力;夹心钢板混凝土板发生上层混凝土压碎,夹心钢板、上层和下层混凝土板连接性能较强,整体性较好,具有继续承载的能力,且夹心钢板混凝土板跨中挠度和混凝土碎块飞溅距离较小。单侧钢板混凝土板和夹心钢板混凝土板配置钢筋网可以显著增强混凝土层和钢板的连接性能,有效减小上下层混凝土的碎裂和剥落,增强其整体性和抗爆性能。
接触爆炸荷载对钢筋混凝土梁的局部毁伤效应
王辉明, 刘飞, 晏麓晖, 汪剑辉, 尚伟, 吕林梅
2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171
摘要:
为得到接触爆炸下钢筋混凝土(reinforced concrete,RC)梁的局部破坏模式和毁伤效应,对同一尺寸的RC梁进行了不同装药量的接触爆炸试验研究。试验中采用框架结构中典型工程尺度RC原型梁为研究对象,通过4次爆炸试验,观测了RC梁在不同装药量下的局部破坏模式和破坏特征,分析了装药量对局部毁伤效应的影响。研究结果表明:接触爆炸荷载作用下,RC梁将发生正面成坑、侧面崩落、背面震塌和截面冲切等局部破坏模式,爆坑深度、震塌厚度、表面毁伤面积以及受压区纵筋变形均与装药量立方根近似呈线性增加关系。在试验数据基础上,将RC梁局部毁伤程度划分为轻度毁伤、中度毁伤、重度毁伤和严重毁伤4个等级,采用比例装药量判据进行评估。研究成果可为抗爆结构设计和结构毁伤评估提供理论依据。
钢筋混凝土排架结构的抗爆破坏等级
张帝, 杨军, 曾丹, 陈泰年, 高金明, 汤宇
2020, 40(12): 121405. doi: 10.11883/bzycj-2020-0012
摘要:
为了研究钢筋混凝土排架结构在大当量爆炸冲击波下的破坏规律,依据最大TNT当量为3 t的爆炸试验,对排架主体结构的抗爆破坏等级进行数值模拟研究。通过量纲分析得到1/2缩比模型的荷载参数和结构尺寸。基于Abaqus有限元软件,利用CONWEP方法实现爆炸加载,分别计算装药0.5 t爆距33 m和装药3 t爆距33 m两种工况下排架结构的破坏形态,并与试验结果进行对比。进一步通过控制药量和距离,计算不同超压和冲量下缩比模型的破坏形态。研究结果表明,排架的关键破坏特征为中间承重柱的倾覆转动;数值计算与试验破坏形态吻合较好,特征位移和特征转角的最大相对误差分别为5.6%和4.6%。以承重柱的倾覆角作为划分依据,将计算结果分为3种破坏等级,拟合得到的超压-冲量曲线和药量-距离曲线可用于厂房安全距离和仓库容量设计以及意外爆炸下的破坏程度预估。
爆炸物理
Ti-6Al-4V弹体破坏模式对冲击反应的影响研究
何丽灵, 张方举, 颜怡霞, 谢若泽, 徐艾民, 周燕良
2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046
摘要:
Ti-6Al-4V材料是武器结构轻量化时的重要替代材料,其冲击反应将可能增加战斗部毁伤威力,但目前缺乏对其冲击反应条件及反应机理的研究。本文将采用试验与理论分析方法,研究结构破坏模式对Ti-6Al-4V材料冲击反应的影响,获得其冲击反应条件及反应机理。设计并开展了钛合金弹(头部与壳体均为钛合金)与复合弹(头部碳/碳复合材料、壳体空心钛合金圆柱)正侵彻混凝土试验,撞击速度在222~1008 m/s之间。钛合金弹激发了剧烈的氧化冲击反应,但复合弹未产生冲击反应。破坏模式宏细观分析显示,钛合金弹侵彻后宏观结构基本完整,仅表面发生摩擦磨损,以细观组织剪切变形为主要失效模式,形成尺寸在微米量级至百微米量级的颗粒碎片,碎片个数可高达3×106。复合弹的钛合金空心圆柱被撕裂成块,撕裂面沿剪切带方向发展,碎块尺寸在毫米或以上量级,个数至多百余个。碎片供氧和供热的效率均与碎片尺寸成反比,而特定供氧与供热条件下,碎片尺寸足够小是Ti-6Al-4V材料发生冲击反应的必要条件,这是钛合金弹发生冲击反应而钛合金空心圆柱无法激发冲击反应的本质原因。在具备冲击反应必要条件的前提下,碎片个数越多,冲击反应烈度越高。
升温速率与流变特性对B炸药慢烤响应的影响
周捷, 智小琦, 王帅, 范兴华
2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431
摘要:
为探究慢速烤燃过程中不同升温速率下B炸药流变特性的尺寸效应对相变后内部温度场的分布特征与点火位置的影响,设计了\begin{document}$\varnothing $\end{document}76 mm与\begin{document}$\varnothing $\end{document}130 mm两种尺寸的烤燃弹。通过慢烤试验分别获得了1 ℃/min与3.3 ℃/h两种升温速率下,各烤燃弹内部监测点的温度变化曲线,结合数值模拟进一步分析了各工况下烤燃弹内部温度场的变化特点。研究结果表明:在升温速率为1 ℃/min时,两种尺寸的烤燃弹在炸药还未完全相变前就已发生响应,对流的存在导致炸药顶部的熔化速率明显高于底部,B炸药流变特性的尺寸效应不明显;当升温速率为3.3 ℃/h时,相变完成后,尺寸偏小的烤燃弹内部流场强度低,温度场变化十分缓慢,而尺寸偏大的烤燃弹内部流场强度较大,温度场很快体现出典型的液相温度场分布特征,B炸药的流变特性具有明显的尺寸效应;无论升温速率的快慢与尺寸的大小,炸药发生相变后温度最高点、自热反应区域与最终响应区域都出现在药柱顶部附近。
冲击动力学
引入Sierpinski层级特性的新型薄壁多胞管轴向冲击吸能特性
何强, 王勇辉, 史肖娜, 顾航, 陈宇
2020, 40(12): 123101. doi: 10.11883/bzycj-2020-0055
摘要:

为提高薄壁结构的吸能能力,基于Sierpinski分形结构提出了一种具有层级特性的新型薄壁管,即Sierpinski层级管(Sierpinski hierarchical tube, SHT)。采用非线性有限元法对SHTs在轴向冲击载荷作用下的变形模式和能量吸收特性进行了数值分析,并与普通三角形薄壁管在轴向冲击载荷作用下的变形模式和能量吸收特性进行了对比。结果表明:SHTs的变形模式为轴对称渐进屈曲模式,在薄壁管中引入Sierpinski层级特性后,胞壁弯曲过程的半折叠波长减小,促使压缩过程中形成更多的塑性折叠单元,有利于提高薄壁结构能量吸收能力。进一步基于能量守恒理论和塑性铰理论对SHTs的轴向压缩应力进行理论求解,并通过有限元数值模拟验证其准确性。在相同的相对密度下,一阶、二阶及三阶SHTs的动态压缩应力较普通三角形薄壁管的动态压缩应力提高了85.8%、138.2%和183.8%。将Sierpinski层级特性引入薄壁管的设计中,能够有效提高薄壁管的耐撞性能。

高韦伯数条件下黏性对液滴变形过程的影响
申帅, 李建玲, 刘金宏, 范玮
2020, 40(12): 123201. doi: 10.11883/bzycj-2020-0051
摘要:
为探究液滴黏性对变形过程的影响,深入了解液滴在冲击波作用下变形破碎的行为机制。采用高速阴影技术在水平激波管上拍摄了高韦伯数(We=1 100~4 400)条件下,3种黏性硅油液滴的变形过程。结果表明随着黏性的提升:液滴演化出相应特征所需时间增大,同时会出现新的变形特征;液滴空间及位移特征参数的生长速率降低而变形时间、最大变形高度/位移都增大,这是因为提升的黏性力降低了变形速率、耗散了更多的动能并延长了液滴的变形过程;液滴表面最不稳定的Kelvin-Helmholtz波朝着大尺度、低生长率的方向发展,从而实现黏性对变形过程的延缓作用。随着最大变形位移的增大,最大变形高度首先线性增长,之后增幅降低。
回转体高速倾斜入水的流场特性及结构响应
高英杰, 孙铁志, 张桂勇, 尤天庆, 殷志宏, 宗智
2020, 40(12): 123301. doi: 10.11883/bzycj-2020-0014
摘要:
回转体高速入水过程涉及液体和固体的耦合作用,是一个复杂的非线性、非定常过程。为研究回转体高速入水的结构动响应及流场演变规律,本文中基于STAR-CCM+和ABAQUS平台,建立了回转体高速入水的双向流固耦合数值模型,开展了不同入水速度的回转体高速倾斜入水流固耦合数值计算。结果表明:数值计算的入水速度、位移曲线和空泡形态与实验结果良好吻合,验证了流固耦合方法的有效性;回转体倾斜高速入水的载荷先集中在触水部分边缘处,后集中于回转体底部中心处;流固耦合方法的入水冲击载荷峰值小于刚体的,弹性回转体的载荷曲线产生明显波动;撞水阶段,回转体空泡呈现不对称形态,随着入水加深,空泡不对称性变弱;入水速度60 m/s下,空泡发生表面闭合,回转体入水初速度越快,空泡表面闭合越晚;冲击载荷与入水速度有关,入水速度越大,峰值出现越早,震荡越明显,速度超过100 m/s时,回转体产生塑性形变。
实验技术与数值方法
一种散体材料SHPB被动围压试验体应力修正方法
魏久淇, 张春晓, 曹少华, 王世合, 李磊
2020, 40(12): 124201. doi: 10.11883/bzycj-2019-0411
摘要:
本文利用有限元仿真给出了一种修正方法,并用数值仿真和试验验证了该方法的可靠性。研究表明:散体材料SHPB被动围压试验中,试样厚度远小于厚壁圆筒长度时,端部效应会导致厚壁圆筒不均匀凸出变形,计算材料的体应力-应变关系不能将厚壁圆筒应力状态简化为平面应力问题;厚壁圆筒处于弹性状态下,通过厚壁圆筒理论计算出的径向力与真实径向力存在一定比例关系,在一定范围内,折算系数与试样实时厚度呈二次函数关系。
应用爆炸力学
乙烯储罐气体泄漏诱发蒸气云爆炸的数值模拟
王秋红, 孙艺林, 李鑫, 蒋军成, 张明广, 王刘兵
2020, 40(12): 125401. doi: 10.11883/bzycj-2020-0202
摘要:
储罐会因腐蚀或人为误操作等原因引发泄漏,造成泄漏气体扩散或气云爆炸事故。为了揭示此种事故的发展过程及影响规律,应用计算流体力学软件FLACS,研究了泄漏和环境风两个主要影响因素对乙烯气体扩散及爆炸的影响。结果表明:气云扩散距离和体积随泄漏速率增加而增大;当泄漏速率低于6 kg/s时,不同泄漏方向上的气云扩散距离及体积相近;当泄漏速率高于6 kg/s时,气体泄漏扩散和气云形成过程因受到障碍物影响,随阻塞率增大,气云扩散距离减小,气云体积增加。当泄漏方向垂直于储罐组中轴线,泄漏速率为18 kg/s时,气云扩散距离最大为81.5 m;当泄漏方向平行于储罐组中轴线,泄漏速率为24 kg/s时,气云体积最大达到9 604 m3。爆炸波的冲击压力随泄漏速率升高而升高;环境风会加快可燃气体稀释,有效降低气云爆炸发生的概率,降低爆炸强度,达到爆炸压力峰值的时间更早,可使高温在更短的时间内下降。泄漏速率为24 kg/s时,与泄漏储罐紧邻的储罐表面上被冲击到的爆炸超压仅为6.88 kPa,但温度高达2 384 K,因此,为避免事故发生时的二次灾害,救援中对储罐组的冷却降温尤为重要。