Experimental study on detonation characteristics of liquid fuel-air mixtures
-
摘要: 采用升降法和烟迹技术在立式激波管中分别实测了液态燃料(环氧丙烷、硝酸异丙酯、己烷、C5~C6、庚烷、癸烷)与空气混合物直接起爆的临界起爆能和胞格尺寸。数据表明,气液两相云雾爆轰的临界起爆能与当量比呈U形曲线关系,这与气相爆轰得到的结论是一致的;临界起爆能的最小值并不是对应于等化学当量的混合物而是偏向于富燃料;根据三波点运动的烟迹记录,分析了云雾爆轰作用机制,认为液滴的碎解、汽化过程以及燃烧区前导是控制气液两相云雾爆轰的主要步骤。此外,还测定了无限空间下可燃气云的临界起爆能,并将激波管内得到的临界起爆能数据外推到无约束气云的临界起爆能,理论推算结果与实验值吻合较好。
-
关键词:
- 爆炸力学|临界起爆能|升降法|碳氢燃料|云雾爆轰 /
- 胞格结构
Abstract: Detonation characteristics of several fuel vapor (propylene epoxide, IPN,C5~C6, hexane, heptane, decane)-air mixtures were studied. Critical initiation energy was measured by the up-and-down method and cell size on soot foil. Results demonstrate that the relationship of critical initiation energy and equivalence ratio shows a U-shaped curve, the critical energy is obtained when equivalence ratio is slightly larger than 1. Meanwhile these results are used to calculate theoretical critical initiation energy of hydrocarbon-air mixture in unconfined conditions, and calculated values agree well with experimental results. The comparison of detonation characteristics among these fuels indicates that detonation of FAE in low fuel vapor pressure is similar to the gaseous detonation. These experimental results enable us to have an insight into the detonation nature of fuel-air mixtures.-
Key words:
- mechanics of explosion /
- critical initiation energy
计量
- 文章访问数: 2303
- HTML全文浏览量: 81
- PDF下载量: 348
- 被引次数: 0