Application of high-order accurate PPM schemes to simulation of turbulent combustion
-
摘要: 利用处理三维可压缩粘性流体流动问题中的沉浸边界法,并结合基于PPM方法的高精度TVD格式,对三维方形管道中部的圆柱火焰绕流及惰性气体绕流问题进行了数值模拟。计算湍流时采用大涡模拟(LES),化学反应速率采用EBU漩涡破碎模型。通过计算结果与实验结果的比较,发现高精度PPM格式能精确模拟两类圆柱绕流问题。计算中还发现,火焰圆柱绕流算例中,在火焰翻越圆柱前,由于燃烧的膨胀作用,使得火焰正面前的未燃气体流动并形成惰性气体绕流,这与无燃烧时的惰性气体绕流类似。但当火焰翻越圆柱过程中及完全翻越圆柱后,两种算例绕流流场出现明显变化。Abstract: Flames and inert gases past an cylinder obstacle were numerically simulated by using the immersed boundary method used in the 3D compressible viscous flow and the high-order accurate total variation diminishing (TVD) schemes based on the high-order piecewise parabolic method (PPM). In the turbulent calculation, the large eddy simulation (LES) was introduced and the eddy break-up(EBU) model was adopted to compute the chemical reaction rate. Comparison of the simulated and experimental results shows that the high-accuracy PPM schemes can used to simulate fame and inert gas past a cylinder obstacle effectively. The numerical computation of the flame past the cylinder obstacle indicates that before the flame passes the cylinder obstacle, the gas expansion due to combustion causes the unburned gases in front of the flame to flow and to form the inert gas past the cylinder obstacle. This is similar to the inert gas past the cylinder obstacle without combustion. But there are obvious differences between the fame and inert gas past the cylinder obstacle when and after the flame passes the cylinder obstacle.
计量
- 文章访问数: 2596
- HTML全文浏览量: 123
- PDF下载量: 202
- 被引次数: 0