Numerical simulation of double layer shaped charge
-
摘要: 基于凝聚炸药冲击起爆的Lee-Tarver模型,利用AUTODYN有限元计算软件对夹层聚能装药作用过程进行了数值模拟。分别对夹层聚能装药爆轰波形传播过程及其特性参数进行了数值计算,对典型聚能装药采用单一结构装药、夹层装药的射流成型过程进行了数值研究,最后对不同爆速炸药匹配关系的夹层聚能装药射流参数进行了计算分析。计算结果表明,相对于单一结构装药,夹层装药射流头部速度提高了20%,夹层聚能装药能有效提高聚能金属射流头部速度、提高侵彻深度、增加炸药装药的作功能力。
-
关键词:
- 爆炸力学 /
- 夹层装药 /
- AUTODYN有限元软件 /
- 聚能装药 /
- 超压爆轰
Abstract: The finite element code AUTODYN was used to numerically simulate the detonation processes of double layer shaped charges. The shock initiation of the inner layer charge was described by the Lee-Tarver ignition and growth model. Detonation wave propagation processes of the double layer shaped charges were discussed by the numerical results and the corresponding characteristic parameters were obtained. Jet formation processes of the typical single and double layer shaped charges were numerically presented, and jet parameters for the double layer charges with different detonation velocities in the inner and outer layers were numerically analyzed. Calculated results show that the jet head velocities of the double layer shaped charges are higher 20% than those of the single layer shaped charges. Double layer charges can effectively enhance the head velocity of a shaped charge metal jet, augment its penetration depth and increase explosive charge power.
计量
- 文章访问数: 3140
- HTML全文浏览量: 171
- PDF下载量: 446
- 被引次数: 0