Failure mechanism of single-layer reticulated domes subjected to impact loads
-
摘要: 为研究单层球面网壳在冲击荷载下的失效机理,在ANSYS/LS-DYNA中建立60m跨度K8型单层球面网壳与圆柱形冲击物的数值模型并进行数值分析,总结了网壳结构的4种失效模式。通过对失效全过程的分析,从能量的角度将失效过程分为能量施加、能量传递与损失、能量消耗3个阶段。之后分别从能量传递与杆件破坏形式2方面揭示了网壳的失效机理。能量分析表明:剩余能量(Elf)对结构最终动力响应及失效模式起决定作用,而Elf只是初始冲击能量中除去冲击物穿透损失与网壳局部破坏损失后的剩余部分。通过对杆件破坏形式的分析发现:杆件的破坏可能滞后于冲击荷载的作用,且杆件的破坏形式决定其传递能量的能力,当杆件发生拉伸破坏时,其强度被充分利用,传递的能量最多,Elf值较大,网壳整体破坏严重。杆件的破坏形式与Elf及网壳整体的失效模式间有很好的对应关系。Abstract: Numerical models for single-layer Kiewitt-8 reticulated domes with the span of 60 m and cylinder impactors were established by the ANSYS/LS-DYNA program and a series of numerical simulations were carried out. Four failure modes for the reticulated domes were put forward according as the displacement and plastic deformation. The whole failure process was divided into three steps including energy applying, energy loss and energy transfer, energy consumption, by the dynamic response characteristics of each step. Failure mechanisms of the reticulated domes were explained at the two aspects of energy transfer and failure types for members in impact zones. Energy analysis displays that the left energy (Elf) is the main factor to decide the final dynamic response and failure mode, but Elf is the initial impact energy eliminated penetrating loss by the impactor and local breakage loss by members in the impact zone. Analysis for failure types of members indicates that failure of members may lag by contrast the end of impact load, and failure types of members decide the ability of energy transfer. When remembers undergo tension failure, intensities of members are made full use of, the most energy is transferred, the left energy is more, and the whole reticulated dome experiences severe breakage. Moreover, there is a good consistent relationship among failure types of members, failure modes of the reticulated dome and left energy.
-
Key words:
- solid mechanics /
- failure mechanism /
- impact /
- reticulated domes /
- failure mode /
- dynamic response
-
推荐阅读
高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理
惠煜中 等, 爆炸与冲击, 2024
球形弹丸高速冲击in718合金板的变形与破坏模式
陈艳丹 等, 爆炸与冲击, 2024
柱形装药空中爆炸冲击波荷载研究
王明涛 等, 爆炸与冲击, 2024
爆炸荷载作用下uhpc板的弯曲损伤评估
苏琼 等, 爆炸与冲击, 2023
简谐荷载作用下弹性土体中圆形隧道
和轨道结构的动力响应
张 勇 等, 浙江工业大学学报, 2024
开孔对双层球面网壳结构静力特性的影响分析
刘娟 等, 海南大学学报(自然科学版中英文), 2022
负压爆炸载荷作用下固支钢板变形研究
杨锐 等, 高压物理学报, 2023
Anion-enrichment interface enables high-voltage anode-free lithium metal batteries
Mao, Minglei et al., NATURE COMMUNICATIONS, 2023
Progressive collapse of multistory 3d reinforced concrete frame structures after the loss of an edge column
STRUCTURE AND INFRASTRUCTURE ENGINEERING
Impact failure and disaster processes associated with rockfalls based on three-dimensional discontinuous deformation analysis
EARTH SURFACE PROCESSES AND LANDFORMS, 2024
计量
- 文章访问数: 5328
- HTML全文浏览量: 364
- PDF下载量: 1223
- 被引次数: 0