Characteristics of ultra-high performance cementitious composites under explosion
-
摘要: 用大掺量超细工业废渣取代水泥,最大粒径为2.5 mm的天然砂取代粒径为600 m的磨细石英砂,并掺加高弹高强粗集料(最大粒径分别为15、10 mm的玄武岩石子),制备出不同强度等级的超高性能水泥基复合材料(UHPCC).对9块靶体进行了接触爆炸实验,对比分析了靶体材料的爆炸破坏现象,结果表明,制备的超高性能水泥基复合材料具有优异的抗爆炸、抗震塌性能.由爆炸漏斗坑尺寸计算分析得到3种材料的抗爆炸系数,分析表明其抗爆炸系数与材料本身的抗拉强度的平方根成反比,提出了超高性能水泥基复合材料爆炸漏斗坑深度计算公式,以期为防护工程材料的设计提供参考.
-
关键词:
- 爆炸力学 /
- 抗爆性能 /
- 钢纤维 /
- 超高性能水泥基复合材料
Abstract: Ultra-high performance cementitious composites (UHPCC) were prepared by substitution ofultra-fine industrial waste powder for large quantity of cement by weight and replacement of groundfine quartz sand with natural fine sand with the maximum particle diameter of 2.5 mm. And in theprepared UHPCC,the basalt stones with high elastic module and high strength were added,whosemaximum particle diameters was 15 and 10 mm,respectively. Nine contact-explosion tests were per-formed for concrete targets and the macroscopic damages were described. The explosive compressioncoefficients were computed by the explosion-induced infundibular crater size and a formula was pro-posed to calculate the explosion-induced infundibular crate depth. The results indicate that the pre-pared UHPCC have remarkable anti-explosion and anti-scabbing properties and that the explosioncompression coefficient is inversely proportional to the square root of tensile strength.
计量
- 文章访问数: 6564
- HTML全文浏览量: 315
- PDF下载量: 2417
- 被引次数: 0