Numerical investigations on shock wave propagation through a tube with rectangular grooves
-
摘要: 基于二维Euler方程,结合五阶加权基本无振荡(weighted essentially nonoscillatory,WENO)格式以及自适应网格加密(adaptive mesh refinement,AMR)技术对入射激波在矩形凹槽管道内传播过程进行了数值模拟。数值结果清晰地显示了入射激波传播过程中与多个矩形凹槽作用以及在凹槽内变化的整个过程,且与已有的实验结果吻合较好。另外,结果还揭示了入射激波与单个凹槽作用时,会发生绕射产生膨胀波,还会发生碰撞从而诱导反射激波。膨胀波会导致入射激波压力降低,而反射激波则导致其升高,但膨胀波的影响占主导作用,因而入射激波波阵面强度出现振荡下降。Abstract: Based on the 2D Euler equations, the shock wave propagation through the tube with rectangular grooves was numerically simulated by combining the fifth-order weighted essentially nonoscillatory (WENO) scheme and the adaptive mesh refinement (AMR) technique. The numerical results display the interaction of the incident shock wave with the grooves during its propagation inside the tube as well as its evolution within every single groove, and agree with the existent experimental results by N. Gongora-Orozco, et al. In addition, the numerical results reveal that the phenomena of expansion wave induced by shock wave diffraction and reflected shock wave due to collision appear during the interaction of the incident wave with a single groove. The expansion wave attenuates the incident shock wave, the reflected wave amplifies its intensity, but the attenuation effect dominates the process, resulting in the front intensity decrease of the incident wave in a vibrating way.
-
Key words:
- fluid mechanics /
- shock wave attenuating /
- WENO scheme /
- tube with rectangular grooves
计量
- 文章访问数: 2750
- HTML全文浏览量: 120
- PDF下载量: 228
- 被引次数: 0