空心微珠/Al复合材料的动态压缩力学性能和吸能特性

张博一 王伟 武高辉

张博一, 王伟, 武高辉. 空心微珠/Al复合材料的动态压缩力学性能和吸能特性[J]. 爆炸与冲击, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07
引用本文: 张博一, 王伟, 武高辉. 空心微珠/Al复合材料的动态压缩力学性能和吸能特性[J]. 爆炸与冲击, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07
Zhang Bo-yi, Wang Wei, Wu Gao-hui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion And Shock Waves, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07
Citation: Zhang Bo-yi, Wang Wei, Wu Gao-hui. Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam[J]. Explosion And Shock Waves, 2014, 34(1): 28-34. doi: 10.11883/1001-1455(2014)01-0028-07

空心微珠/Al复合材料的动态压缩力学性能和吸能特性

doi: 10.11883/1001-1455(2014)01-0028-07
基金项目: 国家自然科学基金项目(51108141);中央高校基本科研业务费专项资金项目(HIT.NSRIF.2011101);黑龙江青年科学基金项目(QC2011C064);哈尔滨科技创新人才基金项目(RC2012QN012011)
详细信息
    作者简介:

    张博一(1979—), 男, 博士, 讲师

    通讯作者:

    Zhang Bo-yi, boyi79@163.com

  • 中图分类号: O347

Dynamic-compression mechanical properties and energy-absorption capability of fly-ash cenospheres-reinforced 1199Al-matrix composite foam

Funds: Supported by the National Natural Science Foundation of China (51108141)
  • 摘要: 利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统对空心微珠体积分数为0.4的空心微珠/1199Al复合泡沫在1 700~2 900s-1应变率范围内的动态压缩力学性能、吸能性能进行了研究,还利用SEM扫描电镜对压缩试件断口进行微观组织分析,与准静态条件下材料的压缩力学性能及压缩变形机制进行了对比。结果表明,空心微珠/1199Al复合泡沫是一种应变率敏感材料,与准静态结果相比,在高应变率下复合材料的流动应力和塑性应变有明显的增大,应变率硬化效应对复合材料的流动应力的影响明显大于应变硬化的影响。复合材料的准静态和动态压缩变形机制存在一定差异,动态载荷作用下,空心微珠/1199Al复合泡沫内部空心微珠的压缩和基体材料的充填同时发生,组分之间具有良好的协调变形能力。
  • 图  1  SHPB装置简图

    Figure  1.  Schematic of SHPB setup

    图  2  SHPB实验中典型的应变波形

    Figure  2.  Typical strain waves measured in SHPB experiments

    图  3  准静态及动态压缩应力应变曲线

    Figure  3.  Stress-strain curves at quasi-static and dynamic loading conditions

    图  4  在不同的塑性应变下,流动应力与应变率的关系曲线

    Figure  4.  Flow stress varied with strain rate at different plasitc strains

    图  5  不同应变率时,塑性应变与应变率敏感率之间的关系

    Figure  5.  Strain-rate sensitivity varied with plastic strain at different stain rates

    图  6  不同应变率时吸能效率与压缩应力的关系曲线

    Figure  6.  Energy-absorption efficiency as a function of compressive stress at different stain rates

    图  7  不同应变率时理想吸能效率与压缩应力的关系曲线

    Figure  7.  Ideal energy-absorption efficiency as a function of compressive stress at different stain rates

    图  8  复合泡沫试件准静态压缩变形过程中宏观变形及微观组织

    Figure  8.  Macroscopic deformation and microstructure of composite foam specimen undergoing quasi-static compression

    图  9  试件的压缩变形

    Figure  9.  Compressive deformation of specimen

    图  10  不同应变率下试件断口和空心微珠压缩变形的SEM图片

    Figure  10.  SEM pictures for the fractured surfaces of specimens and the compressive deformation of cenospheres at different strain rates

  • [1] Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications[M]. Wiley-Vch, 2002.
    [2] Ahmaruzzaman M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363. doi: 10.1016/j.pecs.2009.11.003
    [3] Dou Z Y, Jiang L T, Wu G H, et al. High strain rate compression of cenosphere-pure aluminum syntactic foams[J]. Scripta Materialia, 2007, 57(10): 945-948. doi: 10.1016/j.scriptamat.2007.07.024
    [4] Daoud A. Effect of fly ash addition on the structure and compressive properties of 4032-fly ash particle composite foams[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 618-625.
    [5] Rohatgi P K, Daoud A, Schultz B F, et al. Microstructure and mechanical behavior of die casting AZ91D-fly ash cenosphere composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6/7): 883-896.
    [6] Sun D X, Zhao Y Y. Static and dynamic energy absorption of Al foams produced by the sintering and dissolution process[J]. Metallurgical and Materials Transactions B, 2003, 34(1): 69-74. doi: 10.1007/s11663-003-0056-3
    [7] Tao X F, Zhao Y Y. Compressive behavior of Al matrix syntactic foams toughened with Al particles[J]. Scripta Materialia, 2009, 61(5): 461-464. doi: 10.1016/j.scriptamat.2009.04.045
    [8] Zhang L P, Zhao Y Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting[J]. Journal of Composite Materials, 2007, 41(17): 2105-2117. doi: 10.1177/0021998307074132
    [9] Mondal D P, Das S, Ramakrishnan N, et al. Cenosphere filled aluminum syntactic foam made through stir-casting technique[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 279-288. doi: 10.1016/j.compositesa.2008.12.006
    [10] Mondal D P, Goel M D, Das S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam[J]. Materials Science and Engineering: A, 2009, 507(1/2): 102-109.
    [11] Mondal D P, Goel M D, Das S. Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam[J]. Materials and Design, 2009, 30(4): 1268-1274. doi: 10.1016/j.matdes.2008.06.059
    [12] San Marchi C, Cao F, Kouzeli M, et al. Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum[J]. Materials Science and Engineering: A, 2002, 337(1/2): 202-211.
    [13] Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering and Science, 1981, 21(15): 1010-1014. doi: 10.1002/pen.760211505
  • 加载中
图(10)
计量
  • 文章访问数:  3816
  • HTML全文浏览量:  281
  • PDF下载量:  553
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-27
  • 修回日期:  2013-02-04
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回