Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs
-
摘要: 采用ANSYS/LS-DYNA有限元研究了具有不同胞孔构型和排列方式的金属蜂窝材料在面内冲击荷载下的力学性能。在蜂窝的相对密度和冲击速度保持恒定的情况下,比较了它们的变形模式、动态承载力和能量吸收性能。结果表明,不同的胞孔构型导致在蜂窝压垮过程中胞壁的受力状态不同,从而影响蜂窝的宏观力学性能。根据胞壁的应力状态,可将蜂窝分为膜力主导蜂窝和弯曲主导蜂窝2大类。研究结果显示,蜂窝吸收的能量绝大部分转化为变形所需的内能,并且膜力主导蜂窝的内能占总能量的百分比更大。胞壁的屈曲导致膜力主导蜂窝的应力应变曲线呈现较大的波动。膜力主导蜂窝在变形过程中其胞壁会耗散更多的内能,从而比弯曲主导蜂窝具有更高的动态承载力和能量吸收能力。Abstract: The in-plane dynamic behaviors of metal honeycombs filled by cells with various configurations and arrangements are studied by the finite element method using ANSYS/LS-DYNA.The deformation modes, crushing strength and energy-absorption ability are compared among these honeycombs while controlling their relative density and the impact velocity as uniform.It is shown that different cell configurations result in different stress states within the cell walls during the cells'collapse process, which thus influence the macroscopic mechanical properties of the honeycombs.According to the cell-walls'stress state, the involved honeycombs are divided into tow groups:membrane-dominated honeycombs and bending-dominated honeycombs.The results show that most of the absorbed energy of the honeycomb is transferred into the internal energy needed by the deformation.The percentage of the internal energy to the total absorbed energy is much more for the membrane-dominated honeycombs.The buckling of the cell-walls results in obvious oscillation in the stress-strain curves of the membrane-dominated honeycombs.The cell-walls in the membrane-dominated honeycombs will dissipate more internal energy during deformation, resulting in higher crushing strength and higher energy absorption ability than those of the bending-dominated ones.
-
Key words:
- solid mechanics /
- energy absorption /
- impact /
- honeycomb /
- cell configuration /
- crushing strength
-
[1] Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 1997: 99-158. [2] 胡玲玲, 陈依骊.三角形蜂窝在面内冲击荷载下的力学性能[J].振动与冲击, 2011, 30(5): 226-229. doi: 10.3969/j.issn.1000-3835.2011.05.047Hu Ling-ling, Chen Yi-li. Mechanical properties of triangular honeycombs under in-plane impact loading[J]. Journal of Vibration and Shock, 2011, 30(5): 226-229. doi: 10.3969/j.issn.1000-3835.2011.05.047 [3] Qiu X M, Zhang J, Yu T X. Collapse of periodic planar lattices under uniaxial compression, part II: Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1231-1241. [4] Hu L L, Yu T X, Gao Z Y, et al. The inhomogeneous deformation of polycarbonate circular honeycombs under inplane compression[J]. International Journal of Mechanical Sciences, 2008, 50(7): 1224-1236. doi: 10.1016/j.ijmecsci.2008.03.004 [5] Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1): 165-176. doi: 10.1016/j.ijimpeng.2007.11.008 [6] Hu L L, Yu T X. Dynamic crushing strength of hexagonal honeycombs[J]. International Journal of Impact Engineering, 2010, 37(5): 467-474. doi: 10.1016/j.ijimpeng.2009.12.001 [7] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8 [8] 胡玲玲, 尤帆帆.铝蜂窝的动态力学性能及影响因素[J].爆炸与冲击, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004Hu Ling-ling, You Fan-fan. Dynamic mechanical properties of aluminum honeycomb and its effect factors[J]. Explosion and Shock Waves, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004 [9] Hu L L, You F F, Yu T X. Crushing strength of honeycombs with various cell wall angles[J]. Materials Research Innovations, 2010, 15(s1): 155-157. [10] Liu Y, Zhang X C, The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36(1): 98-109. [11] 张新春, 刘颖, 章梓茂.组合蜂窝材料面内冲击性能的研究[J].工程力学, 2009, 26(6): 220-225. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200906039.htmZhang Xin-chun, Liu Ying, Zhang Zi-mao. Research on dynamic properties of suppercell honeycomb structures under in-plane impact loading[J]. Engineering Mechanics, 2009, 26(6): 220-225. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200906039.htm [12] 胡玲玲, 余同希.惯性效应对蜂窝能量吸收性能的影响[J].兵工学报, 2009, 30(增刊2): 144-147.Hu Ling-ling, Yu Tong-xi. Influence of inertia effect on the energy absorption of hexagonal honeycombs[J]. Acta Armamentarii, 2009, 30(suppl 2): 144-147. 期刊类型引用(10)
1. ZHENG Ze-peng,WANG Shu-qing,WANG Xi-chen,YUE Wen. Compression Properties and Energy Absorption of A Novel Double Curved Beam Negative Stiffness Honeycomb Structures. China Ocean Engineering. 2024(05): 821-837 . 必应学术
2. 孙德强,本金翠,张超,许亚利,葛凤,常露,李芸娴. 二维圆弧阵列结构共面冲击下的平台应力研究. 陕西科技大学学报. 2023(03): 147-155 . 百度学术
3. 王佳铭,李志刚,梁方正,刘婉婷,廖就,陈芳育,李萌,邵特立. 面向直升机抗坠毁的新型夹心八边形蜂窝设计、仿真和理论研究. 航空学报. 2022(05): 299-312 . 百度学术
4. 赵著杰,侯海量,李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展. 中国舰船研究. 2021(03): 96-111 . 百度学术
5. 廖就,李志刚,梁方正,王佳铭,刘婉婷,李萌,冯建文. 高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估. 爆炸与冲击. 2021(08): 47-60 . 本站查看
6. 王鹏,朱长锋,郑志军,虞吉林. 多胞材料的动态应力应变状态及其一致近似关系. 爆炸与冲击. 2019(01): 39-46 . 本站查看
7. 韩会龙,张新春,王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性. 爆炸与冲击. 2019(01): 47-57 . 本站查看
8. 李开妍,王晗,郝海. 蜂窝铝材料的铸造工艺和压缩性能研究. 铸造技术. 2019(08): 772-777 . 百度学术
9. 杨家伦,胡俊. 蜂窝铝面内动态压缩性能和吸能特性比较. 湖南文理学院学报(自然科学版). 2019(04): 58-63 . 百度学术
10. 孙德强,张志娟. 基材的应变强化效应对蜂窝缓冲性能的影响. 陕西科技大学学报. 2018(02): 137-141 . 百度学术
其他类型引用(11)
-