胞孔构型对金属蜂窝动态力学性能的影响机理

胡玲玲 蒋玲

胡玲玲, 蒋玲. 胞孔构型对金属蜂窝动态力学性能的影响机理[J]. 爆炸与冲击, 2014, 34(1): 41-46. doi: 10.11883/1001-1455(2014)01-0041-06
引用本文: 胡玲玲, 蒋玲. 胞孔构型对金属蜂窝动态力学性能的影响机理[J]. 爆炸与冲击, 2014, 34(1): 41-46. doi: 10.11883/1001-1455(2014)01-0041-06
Hu Ling-ling, Jiang Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion And Shock Waves, 2014, 34(1): 41-46. doi: 10.11883/1001-1455(2014)01-0041-06
Citation: Hu Ling-ling, Jiang Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion And Shock Waves, 2014, 34(1): 41-46. doi: 10.11883/1001-1455(2014)01-0041-06

胞孔构型对金属蜂窝动态力学性能的影响机理

doi: 10.11883/1001-1455(2014)01-0041-06
基金项目: 国家自然科学基金项目(11172335,10802100)
详细信息
    作者简介:

    胡玲玲(1980—), 女, 博士, 副教授

    通讯作者:

    Hu Ling-ling, hulingl@mail.sysu.edu.cn

  • 中图分类号: O347

Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs

Funds: Supported by the National Natural Science Foundation of China (11172335, 10802100)
  • 摘要: 采用ANSYS/LS-DYNA有限元研究了具有不同胞孔构型和排列方式的金属蜂窝材料在面内冲击荷载下的力学性能。在蜂窝的相对密度和冲击速度保持恒定的情况下,比较了它们的变形模式、动态承载力和能量吸收性能。结果表明,不同的胞孔构型导致在蜂窝压垮过程中胞壁的受力状态不同,从而影响蜂窝的宏观力学性能。根据胞壁的应力状态,可将蜂窝分为膜力主导蜂窝和弯曲主导蜂窝2大类。研究结果显示,蜂窝吸收的能量绝大部分转化为变形所需的内能,并且膜力主导蜂窝的内能占总能量的百分比更大。胞壁的屈曲导致膜力主导蜂窝的应力应变曲线呈现较大的波动。膜力主导蜂窝在变形过程中其胞壁会耗散更多的内能,从而比弯曲主导蜂窝具有更高的动态承载力和能量吸收能力。
  • 图  1  数值计算的有限元模型

    Figure  1.  FEM model for simulations

    图  2  蜂窝的胞孔构型

    Figure  2.  Various cell configurations of honeycombs

    图  3  蜂窝的变形模式

    Figure  3.  Deformation modes of honeycombs

    图  4  蜂窝的应力应变曲线

    Figure  4.  Stress-strain curves of honeycombs

    图  5  蜂窝的动态承载力

    Figure  5.  Crushing strength of honeycombs

    图  6  蜂窝吸收的能量随应变的变化关系

    Figure  6.  Energy absorbed by honeycombs varied with strain

    图  7  蜂窝内能的分数随应变的变化关系

    Figure  7.  Internal-energy fraction of honeycombs varied with strain

    图  8  蜂窝动能随应变的变化关系

    Figure  8.  Kinetic energy of honeycombs varied with strain

    图  9  蜂窝内能随应变的变化关系

    Figure  9.  Internal energy of honeycombs varied with strain

  • [1] Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 1997: 99-158.
    [2] 胡玲玲, 陈依骊.三角形蜂窝在面内冲击荷载下的力学性能[J].振动与冲击, 2011, 30(5): 226-229. doi: 10.3969/j.issn.1000-3835.2011.05.047

    Hu Ling-ling, Chen Yi-li. Mechanical properties of triangular honeycombs under in-plane impact loading[J]. Journal of Vibration and Shock, 2011, 30(5): 226-229. doi: 10.3969/j.issn.1000-3835.2011.05.047
    [3] Qiu X M, Zhang J, Yu T X. Collapse of periodic planar lattices under uniaxial compression, part II: Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1231-1241.
    [4] Hu L L, Yu T X, Gao Z Y, et al. The inhomogeneous deformation of polycarbonate circular honeycombs under inplane compression[J]. International Journal of Mechanical Sciences, 2008, 50(7): 1224-1236. doi: 10.1016/j.ijmecsci.2008.03.004
    [5] Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1): 165-176. doi: 10.1016/j.ijimpeng.2007.11.008
    [6] Hu L L, Yu T X. Dynamic crushing strength of hexagonal honeycombs[J]. International Journal of Impact Engineering, 2010, 37(5): 467-474. doi: 10.1016/j.ijimpeng.2009.12.001
    [7] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
    [8] 胡玲玲, 尤帆帆.铝蜂窝的动态力学性能及影响因素[J].爆炸与冲击, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004

    Hu Ling-ling, You Fan-fan. Dynamic mechanical properties of aluminum honeycomb and its effect factors[J]. Explosion and Shock Waves, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004
    [9] Hu L L, You F F, Yu T X. Crushing strength of honeycombs with various cell wall angles[J]. Materials Research Innovations, 2010, 15(s1): 155-157.
    [10] Liu Y, Zhang X C, The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36(1): 98-109.
    [11] 张新春, 刘颖, 章梓茂.组合蜂窝材料面内冲击性能的研究[J].工程力学, 2009, 26(6): 220-225. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200906039.htm

    Zhang Xin-chun, Liu Ying, Zhang Zi-mao. Research on dynamic properties of suppercell honeycomb structures under in-plane impact loading[J]. Engineering Mechanics, 2009, 26(6): 220-225. http://www.cnki.com.cn/Article/CJFDTotal-GCLX200906039.htm
    [12] 胡玲玲, 余同希.惯性效应对蜂窝能量吸收性能的影响[J].兵工学报, 2009, 30(增刊2): 144-147.

    Hu Ling-ling, Yu Tong-xi. Influence of inertia effect on the energy absorption of hexagonal honeycombs[J]. Acta Armamentarii, 2009, 30(suppl 2): 144-147.
  • 加载中
图(9)
计量
  • 文章访问数:  3237
  • HTML全文浏览量:  397
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-20
  • 修回日期:  2012-11-17
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回