应力波与缺陷相互作用的宏观微观数值模拟

郭昭亮 任国武 汤铁钢 刘仓理

郭昭亮, 任国武, 汤铁钢, 刘仓理. 应力波与缺陷相互作用的宏观微观数值模拟[J]. 爆炸与冲击, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07
引用本文: 郭昭亮, 任国武, 汤铁钢, 刘仓理. 应力波与缺陷相互作用的宏观微观数值模拟[J]. 爆炸与冲击, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07
Guo Zhao-liang, Ren Guo-wu, Tang Tie-gang, Liu Cang-li. Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw[J]. Explosion And Shock Waves, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07
Citation: Guo Zhao-liang, Ren Guo-wu, Tang Tie-gang, Liu Cang-li. Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw[J]. Explosion And Shock Waves, 2014, 34(1): 52-58. doi: 10.11883/1001-1455(2014)01-0052-07

应力波与缺陷相互作用的宏观微观数值模拟

doi: 10.11883/1001-1455(2014)01-0052-07
基金项目: 国家自然科学基金项目(11172279)
详细信息
    作者简介:

    郭昭亮(1984—), 男, 博士研究生

    通讯作者:

    Guo Zhao-liang, gzldl@mail.ustc.edu.cn

  • 中图分类号: O346.1

Microscopic and macroscopic numerical simulation on interaction between stress wave and flaw

Funds: Supported by the National Natural Science Foundation of China (11172279)
  • 摘要: 分别利用LS-DYNA3D有限元程序以及分子动力学方法,从宏观与微观两个层次模拟在动态拉伸载荷作用下含有预置缺陷的薄板中的塑性区形成与演化过程,以及随之而来的动态失效行为。计算结果表明,动态加载下塑性区的形成是应力波与缺陷相互作用以及应力波与应力波相互作用的结果。宏观尺度的LS-DYNA模拟与微观尺度的分子动力学模拟展现出相似的物理特征,即动态载荷下裂纹将萌生在缺陷边缘的前端,然后与缺陷边界连接,最终导致整体破坏。
  • 图  1  建模示意图

    Figure  1.  Scheme of model

    图  2  拉伸载荷

    Figure  2.  History of load

    图  3  应力应变曲线

    Figure  3.  Stress-strain curve

    图  4  含圆孔缺陷非对称薄板网格划分

    Figure  4.  Mesh of an asymmetry sheet with a circularity hole

    图  5  含偏心圆孔缺陷非对称薄板塑性区演化

    Figure  5.  Plastic zone evolution in an asymmetry sheet with a circularity hole

    图  6  含椭圆孔缺陷对称薄板网格划分

    Figure  6.  Mesh of a symmetry sheet with an elliptic hole

    图  7  含中心椭圆孔缺陷对称薄板塑性区演化及失效过程

    Figure  7.  Plastic zone evolution and failure process in a symmetry sheet with an elliptic hole

    图  8  含有椭圆缺陷的二维密堆积体系的分子动力学模拟

    Figure  8.  Molecular dynamic simulation in 2D closed-pack system with an elliptic hole

    图  9  材料内部缺陷分布示意图

    Figure  9.  Flaw distribution within material

  • [1] Fields R J, de Wit R. Plastic zone formation around an arresting crack[C]//Knauss W G, Rosakis A J. Non-linear fracture: Recent advances. Springer, 1990: 231-238.
    [2] Khan S M A, Khraisheh M K. A new criterion for mixed mode fracture initiation based on the crack tip plastic core region[J]. International Journal of Plasticity, 2004, 20(1): 55-84. doi: 10.1016/S0749-6419(03)00011-1
    [3] Bian Li-chun, Kim K S. The minimum plastic zone radius criterion for crack initiation direction applied to surface cracks and through-cracks under mixed model loading[J]. International Journal of Fatigue, 2004, 26(11): 1169-1178. doi: 10.1016/j.ijfatigue.2004.04.006
    [4] Gao Xin, Wang Han-gong, Kang Xing-wu, et al. Analysis solutions to crack tip plastic zone under various loading conditions[J]. European Journal of Mechanics A: Solids, 2010, 29(4): 738-745. doi: 10.1016/j.euromechsol.2010.03.003
    [5] Janssen M, Zuidema J, Wanhill R J H. Fracture Mechanics[M]. Spon Press, 2004.
    [6] 张亚, 强洪夫, 杨月诚.复合型裂纹小范围屈服下裂尖塑性区统一解[J].机械工程学报, 2007, 43(2): 50-54. doi: 10.3321/j.issn:0577-6686.2007.02.007

    Zhang Ya, Qiang Hong-fu, Yang Yue-cheng. Unified solutions to mixed mode crack tip under small scale yielding[J]. Chinese Journal of Mechanical Engineering, 2007, 43(2): 50-54. doi: 10.3321/j.issn:0577-6686.2007.02.007
    [7] Huang Yi, Chen Jing-jie, Liu Gang. A new method of plastic zone size determined based on maximum crack opening displacement[J]. Engineering Fracture Mechanics, 2010, 77(14): 2912-2918. doi: 10.1016/j.engfracmech.2010.06.026
    [8] Shi S Q, Puls M P. A simple method of estimating the maximum normal stress and plastic zone size at a shallow notch[J]. International Journal of Pressure Vessels and Piping, 1995, 64(1): 67-71. doi: 10.1016/0308-0161(94)00070-Y
    [9] 张培源, 张晓敏, 严波, 等.裂尖曲率对裂纹前缘塑性区的影响[J].应用力学学报, 2004, 21(4): 93-96. doi: 10.3969/j.issn.1000-4939.2004.04.020

    Zhang Pei-yuan, Zhang Xiao-min, Yan Bo, et al. Plastic zone affected by crack tip curvature[J]. Chinese Journal of Applied Mechanics, 2004, 21(4): 93-96. doi: 10.3969/j.issn.1000-4939.2004.04.020
    [10] 布洛克D.工程断裂力学[M].王克仁, 译.北京: 科学出版社, 1980.
    [11] 钱才富, 姜忠军, 陈平, 等, 裂纹尖端塑性区和无位错区的微观模拟[J].金属学报, 2004, 40(2): 159-162.

    Qian Cai-fu, Jiang Zhong-jun, Chen Ping, et al. Micro-simulation of crack tip plastic zone and dislocation-free zone[J]. Acta Metallurgica Sinica, 2004, 40(2): 159-162.
    [12] 钱才富, 李慧芳, 崔文勇. Ⅰ型裂纹尖端塑性区和无位错区及其对裂纹扩展的影响[J].材料研究学报, 2007, 21(6): 599-603. doi: 10.3321/j.issn:1005-3093.2007.06.008

    Qian Cai-fu, Li Hui-fang, Cui Wen-yong. ModeⅠcrack tip plastic zone, dislocation-free zone and their effects on crack propagation[J]. Chinese Journal of Materials Research, 2007, 21(6): 599-603. doi: 10.3321/j.issn:1005-3093.2007.06.008
    [13] Rudd R E, Belak J F. Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: An atomistic simulation[J]. Computational Materials Science, 2002, 24(1/2): 148-153.
    [14] Rudd R E. Void growth in BCC metals simulated with molecular dynamics using the Finnis-Sinclair potential[J]. Philosophical Magazine, 2009, 89(34/35/36): 3133-3161.
    [15] SeppäläE T, Belak J, Rudd R E. Onset of void coalescence during dynamic fracture of ductile metals[J]. Physical Review Letters, 2004, 93(24): 245503. doi: 10.1103/PhysRevLett.93.245503
    [16] 祁美兰, 贺宏亮, 王永刚, 等.动态冲击下纯铝中微损伤演化的仿真研究[J].振动与冲击, 2007, 26(8): 133-135. doi: 10.3969/j.issn.1000-3835.2007.08.033

    Qi Mei-lan, He Hong-liang, Wang Yong-gang, et al. Simulation of micro void evolution in the pure aluminum under dynamic loading[J]. Journal of Vibration and Shock, 2007, 26(8): 133-135. doi: 10.3969/j.issn.1000-3835.2007.08.033
    [17] 王永刚, 刘宏伟.强冲击载荷下含杂质的纯铝中微孔洞长大的动力学行为[J].高压物理学报, 2010, 24(4): 248-254.

    Wang Yong-Gang, Liu Hong-wei. Dynamic behavior of void growth in aluminum with a preexisting flaw under intense impact loading[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 248-254.
    [18] 工程材料实用手册委员会.工程材料实用手册: 结构钢、不锈钢[M].北京: 中国标准出版社, 1988.
    [19] LS-DYNA Keyword user's manual-2003[M]. California: Livermore, 2003.
    [20] 郭昭亮, 刘仓理, 汤铁钢.预置圆孔膨胀环动态断裂行为研究[J].实验力学, 2010, 25(5): 546-552.

    Guo Zhao-liang, Liu Cang-li, Tang Tie-gang. On the expanding ring dynamic fracture behavior with a preset circular hole[J]. Journal of Experimental Mechanics, 2010, 25(5): 546-552.
    [21] Wagner N J, Holian B L, Voter A F. Molecular-dynamics simulations of two-dimensional materials at high strain rates[J]. Physical Review A, 1992, 45(12): 8457-8470. doi: 10.1103/PhysRevA.45.8457
    [22] 潘永亮, 汪琥庭, 汪芳庭, 等.复变函数[M].北京: 科学出版社, 2004.
  • 加载中
图(9)
计量
  • 文章访问数:  3489
  • HTML全文浏览量:  314
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-12
  • 修回日期:  2012-09-05
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回