砌体填充墙的抗爆性能

范俊余 方秦 陈力 张亚栋

范俊余, 方秦, 陈力, 张亚栋. 砌体填充墙的抗爆性能[J]. 爆炸与冲击, 2014, 34(1): 59-66. doi: 10.11883/1001-1455(2014)01-0059-08
引用本文: 范俊余, 方秦, 陈力, 张亚栋. 砌体填充墙的抗爆性能[J]. 爆炸与冲击, 2014, 34(1): 59-66. doi: 10.11883/1001-1455(2014)01-0059-08
Fan Jun-yu, Fang Qin, Chen Li, Zhang Ya-dong. Anti-blast properties of masonry infill walls[J]. Explosion And Shock Waves, 2014, 34(1): 59-66. doi: 10.11883/1001-1455(2014)01-0059-08
Citation: Fan Jun-yu, Fang Qin, Chen Li, Zhang Ya-dong. Anti-blast properties of masonry infill walls[J]. Explosion And Shock Waves, 2014, 34(1): 59-66. doi: 10.11883/1001-1455(2014)01-0059-08

砌体填充墙的抗爆性能

doi: 10.11883/1001-1455(2014)01-0059-08
基金项目: 国家自然科学基金项目(51208509,51021001,51008306);国家重点基础研究发展计划(973计划)项目(2012CB026204)
详细信息
    作者简介:

    范俊余(1978—), 女, 博士, 讲师

    通讯作者:

    Fan Jun-yu, fjy7361@sina.com

  • 中图分类号: O383.2; TU362

Anti-blast properties of masonry infill walls

Funds: Supported by the National Natural Science Foundation of China (51208509, 51021001, 51008306); the National Basic Research Program of China (973 Program) (2012CB026204)
  • 摘要: 为了揭示砌体填充墙的抗爆破坏机理,在野外实验中,测得了爆炸条件下砌体填充墙上的爆炸荷载及位移,得到了墙的抗爆性能、破坏模式以及碎片的飞散和分布情况。实验结果表明,墙体的破坏模式与荷载的大小有关,其破坏主要由灰缝的破坏引起。结合实验现象,采用分离式建模的精细化数值模拟方法,得到了不同荷载条件下裂缝的发展过程、墙体的边界条件对墙体的破坏模式的影响,确定了墙体不同破坏等级时的药量,进一步说明本文中数值模拟方法的合理性。
  • 图  1  实验模型平面布置

    Figure  1.  Position sketch of the experimental model

    图  2  实验模型

    Figure  2.  Photo of the experimental model

    图  3  实验模型的施工

    Figure  3.  Construction of the experimental model

    图  4  压力测点布置

    Figure  4.  Distribution of pressure gauges

    图  5  位移测点布置

    Figure  5.  Distribution of displacement gauges

    图  6  墙上测点的压力曲线

    Figure  6.  Overpressure curves at gauge points

    图  7  第5炮后实验墙的破坏形态

    Figure  7.  Failure form of the test wall for No.5

    图  8  第11炮后实验墙的破坏形态

    Figure  8.  Failure form of the test wall for No.11

    图  9  第12炮后实验墙的破坏形态

    Figure  9.  Failure form of the test wall for No.12

    图  10  碎片的分布情况

    Figure  10.  Distribution of the fragment

    图  11  有限元模型及网格划分

    Figure  11.  Finite element model

    图  12  第3炮各测点的位移曲线

    Figure  12.  Displacement curves at gauge points for No.3

    图  13  Q=3.9kg时墙的损伤破坏

    Figure  13.  Damage of the wall for Q=3.9kg

    图  14  Q=37kg时墙的损伤破坏

    Figure  14.  Damage of the wall for Q=37kg

    图  15  墙体的严重破坏

    Figure  15.  Severe damage of the wall

    图  16  Q=58kg时墙的损伤破坏过程

    Figure  16.  Destory process of the wall for Q=58kg

    表  1  装药量

    Table  1.   Explosive quantities

    No. Q/kg Z/(m·kg-1/3)
    1 0.2 10.00
    2 3.9 3.72
    3 3.9 3.72
    4 8.6 2.87
    5 34.2 1.81
    6 4.8 3.48
    7 4.8 3.38
    8 4.8 3.48
    9 4.8 3.48
    10 10.7 2.66
    11 21.2 2.12
    12 30.0 1.89
    下载: 导出CSV

    表  2  第1炮各测点的压力峰值和冲量

    Table  2.   The peak pressures and impulses of No.1

    测点 pm/Pa I/(MPa·ms)
    实验 计算 实验 计算
    P1 28.02 29.9 34.757 33.25
    P2 28.80 30.3 42.193 33.75
    P3 29.40 30.6 43.726 34.14
    P4 30.00 31.0 45.560 34.40
    P5 - 31.2 - 34.53
    P6 29.41 30.6 45.706 34.09
    P7 28.21 30.5 36.857 34.18
    P8 29.73 30.3 39.543 33.74
    下载: 导出CSV

    表  3  第2炮各测点的压力峰值和冲量

    Table  3.   The peak pressures and impulses of No.2

    测点 pm/kPa I/(MPa·ms)
    实验 计算 实验 计算
    P1 181.5 181 256.0 259.8
    P2 - 185 - 271.8
    P3 181.0 189 264.1 275.6
    P4 - 191 - 278.2
    P5 240.0 192 306.5 279.6
    P6 231.0 188 303.4 275.2
    P7 202.0 187 277.7 273.9
    P8 218.5 185 235.4 271.9
    下载: 导出CSV
  • [1] 张正威, 宋二祥, 陆新征, 等.核爆冲击波作用下空心砌块墙对主体结构的作用[J].工程力学, 2008, 25(5): 73-78.

    Zhang Zheng-wei, Song Er-xiang, Lu Xin-zheng, et al. Effects of concrete masonry walls on structures under nuclear blast loadings[J]. Engineering Mechanics, 2008, 25(5): 73-78.
    [2] Dennis S T, Baylo J T, Woodson S C. Response of 1/4-scale concrete masonry unit(CMU)walls to blast[J]. Journal of Engineering Mechanics, 2002, 128(2): 134-142. doi: 10.1061/(ASCE)0733-9399(2002)128:2(134)
    [3] Woodson S C, Baylot J T. Quarter-scale building/column experiments[C]//Elgaaly M. Advanced technology in structural engineering. Philadelphia, Pennsylvania, USA, 2000: 1-8.
    [4] Eamon C D, Baylot J T. Modeling concrete masonry walls subjected to explosive loads[J]. Journal of Engineering Mechanics, 2004, 130(9): 1098-1106. doi: 10.1061/(ASCE)0733-9399(2004)130:9(1098)
    [5] Thornburg D L. Evaluation of elastomeric polymers used for external reinforcement of masonry wall subjected to blast[D]. Alabama: University of Alabama, 2004.
    [6] Davidson S J, Sudame S. Development of computational model and input sensitivity study of polymer reinforced concrete masonry walls subjected to blast[R]. Alabama: University of Alabama, 2004.
    [7] Martini K. Finite element studies in the out-of-plane failure of unreinforced masonry[C]//Proceedings of the 7th International Conference on Computing in Civil and Build Engineering. 1997: 179-184.
    [8] Wang Ming, Hao Hong, Ding Yang, et al. Prediction of fragment size and ejection distance of masonry wall under blast load using homogenized masonry material properties[J]. International Journal of Impact Engineering, 2009, 36(6): 808-820. doi: 10.1016/j.ijimpeng.2008.11.012
    [9] Hyde D W. CONWEP, conventional weapons effects program: TM5-855-1[M]. Vicksburg: US Waterways Experiment Station, 1991.
    [10] 范俊余, 方秦, 张亚栋, 等.砖墙抗爆性能的数值模拟研究[J].防护工程, 2011, 33(5): 35-40.

    Fan Jun-yu, Fang Qin, Zhang Ya-dong, et al. Numerical simulation on the anti-blast properties of masonry walls[J]. Protective Engneering, 2011, 33(5): 35-40.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  3317
  • HTML全文浏览量:  332
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-20
  • 修回日期:  2013-01-27
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回