Anti-blast properties of masonry infill walls
-
摘要: 为了揭示砌体填充墙的抗爆破坏机理,在野外实验中,测得了爆炸条件下砌体填充墙上的爆炸荷载及位移,得到了墙的抗爆性能、破坏模式以及碎片的飞散和分布情况。实验结果表明,墙体的破坏模式与荷载的大小有关,其破坏主要由灰缝的破坏引起。结合实验现象,采用分离式建模的精细化数值模拟方法,得到了不同荷载条件下裂缝的发展过程、墙体的边界条件对墙体的破坏模式的影响,确定了墙体不同破坏等级时的药量,进一步说明本文中数值模拟方法的合理性。Abstract: The field tests were conducted to investigate the failure mechanism of the masonry infill wall under blast loading.The blast loads and the displacements of the wall under shock waves were measured.And the failure modes of the wall were obtained as well as the ejection and distribution of the wall fragments.The experimental results indicate that the failure modes of the wall are dependent mainly on the amplitudes of the blast loads and the collapse of the wall is leaded by the failure of the cement linings.Based on the above tests, the separated numerical models were established by using LS-DYNA to simulate the dynamic response and the damage of the masonry infill wall under blast loading.And the spreads of the cracks in the wall under different blast loads were obtained and the charge weights corresponding to the different failure modes were confirmed.The numerical results agree quite well with the test data.The boundary conditions can obviously affect the failure modes of the wall.
-
Key words:
- mechanics of explosion /
- failure mechanism /
- field test /
- masonry infill wall /
- anti-blast /
- fragments
-
表 1 装药量
Table 1. Explosive quantities
No. Q/kg Z/(m·kg-1/3) 1 0.2 10.00 2 3.9 3.72 3 3.9 3.72 4 8.6 2.87 5 34.2 1.81 6 4.8 3.48 7 4.8 3.38 8 4.8 3.48 9 4.8 3.48 10 10.7 2.66 11 21.2 2.12 12 30.0 1.89 表 2 第1炮各测点的压力峰值和冲量
Table 2. The peak pressures and impulses of No.1
测点 pm/Pa I/(MPa·ms) 实验 计算 实验 计算 P1 28.02 29.9 34.757 33.25 P2 28.80 30.3 42.193 33.75 P3 29.40 30.6 43.726 34.14 P4 30.00 31.0 45.560 34.40 P5 - 31.2 - 34.53 P6 29.41 30.6 45.706 34.09 P7 28.21 30.5 36.857 34.18 P8 29.73 30.3 39.543 33.74 表 3 第2炮各测点的压力峰值和冲量
Table 3. The peak pressures and impulses of No.2
测点 pm/kPa I/(MPa·ms) 实验 计算 实验 计算 P1 181.5 181 256.0 259.8 P2 - 185 - 271.8 P3 181.0 189 264.1 275.6 P4 - 191 - 278.2 P5 240.0 192 306.5 279.6 P6 231.0 188 303.4 275.2 P7 202.0 187 277.7 273.9 P8 218.5 185 235.4 271.9 -
[1] 张正威, 宋二祥, 陆新征, 等.核爆冲击波作用下空心砌块墙对主体结构的作用[J].工程力学, 2008, 25(5): 73-78.Zhang Zheng-wei, Song Er-xiang, Lu Xin-zheng, et al. Effects of concrete masonry walls on structures under nuclear blast loadings[J]. Engineering Mechanics, 2008, 25(5): 73-78. [2] Dennis S T, Baylo J T, Woodson S C. Response of 1/4-scale concrete masonry unit(CMU)walls to blast[J]. Journal of Engineering Mechanics, 2002, 128(2): 134-142. doi: 10.1061/(ASCE)0733-9399(2002)128:2(134) [3] Woodson S C, Baylot J T. Quarter-scale building/column experiments[C]//Elgaaly M. Advanced technology in structural engineering. Philadelphia, Pennsylvania, USA, 2000: 1-8. [4] Eamon C D, Baylot J T. Modeling concrete masonry walls subjected to explosive loads[J]. Journal of Engineering Mechanics, 2004, 130(9): 1098-1106. doi: 10.1061/(ASCE)0733-9399(2004)130:9(1098) [5] Thornburg D L. Evaluation of elastomeric polymers used for external reinforcement of masonry wall subjected to blast[D]. Alabama: University of Alabama, 2004. [6] Davidson S J, Sudame S. Development of computational model and input sensitivity study of polymer reinforced concrete masonry walls subjected to blast[R]. Alabama: University of Alabama, 2004. [7] Martini K. Finite element studies in the out-of-plane failure of unreinforced masonry[C]//Proceedings of the 7th International Conference on Computing in Civil and Build Engineering. 1997: 179-184. [8] Wang Ming, Hao Hong, Ding Yang, et al. Prediction of fragment size and ejection distance of masonry wall under blast load using homogenized masonry material properties[J]. International Journal of Impact Engineering, 2009, 36(6): 808-820. doi: 10.1016/j.ijimpeng.2008.11.012 [9] Hyde D W. CONWEP, conventional weapons effects program: TM5-855-1[M]. Vicksburg: US Waterways Experiment Station, 1991. [10] 范俊余, 方秦, 张亚栋, 等.砖墙抗爆性能的数值模拟研究[J].防护工程, 2011, 33(5): 35-40.Fan Jun-yu, Fang Qin, Zhang Ya-dong, et al. Numerical simulation on the anti-blast properties of masonry walls[J]. Protective Engneering, 2011, 33(5): 35-40.