Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosive under cook-off conditions
-
摘要: 采用多步热分解反应动力学模型,描述单质炸药热分解反应,提出了多组分网格单元计算方法,对以HMX/TATB为基的多元混合炸药在烤燃条件下的热反应过程进行了计算。通过炸药烤燃实验测量了炸药内部温度,获得了炸药点火时间,验证了计算的准确性。分析了混合炸药组成比例的变化对炸药热反应性能的影响。在HMX/TATB混合炸药热反应阶段,主要是HMX发生分解反应释放热量,TATB的反应量很少,随着混合炸药中TATB含量的增多,炸药的点火时间逐渐增长,点火温度逐渐增高,炸药热安全性增强。Abstract: The thermal decomposition of each component in the composite explosive was described by the multi-step chemical kinetics model.A multi-component grid unit calculation method was put forward to calculate the thermal decomposition reaction processes of the HMX and TATB based composite explosives under the cook-off conditions.And the cook-off tests were carried out to measure the temperatures and ignition times of the explosives and verify the accuracies of the calculations.The thermal reaction performances of the composite explosives were analyzed by changing the mass fraction of each component in them.The results show that the exothermic decomposition of the HMX predominates in the thermal decomposition process of the HMX/TATB composite explosive.Moreover, the ignition time and temperature of the composite explosives increase with the increasing of the TATB contents in the composite explosives.
-
Key words:
- mechanics of explosion /
- multistep reaction /
- multicomponent grid unit /
- composite explosive /
- cook-off
-
表 1 HMX、TATB和Kel-F的物性参数及其热分解反应动力学参数[7]
Table 1. Physical parameter for HMX, TATB and Kel-F as well as their thermal and chemical kinetic parameters[7]
材料 ρ/
(kg·m-3)cV/
(J·g-1·K-1)λ/
(W·m-1·K-1)m Z/s-1 E/
(J·mol-1)x Q/
(J·g-1)HMX 1 850 1 004.62 0.535 8 1 7.990 9×1020 203 574 1 +42.0 2 1.413 0×1021 221 340 1 +252.0 3 2.608 1×1016 186 060 1 -558.6 4 1.598 4×1012 143 220 2 -5 615.4 TATB 1 835 1 088.33 0.879 0 5 7.016 7×1023 252 000 1 +210.0 6 8.749 3×1012 176 400 1 +210.0 7 4.356 0×1011 141 960 2 -2 940.0 Kel-F 2 020 1 000.43 0.052 7 8 9.934 9×1017 272 328 1 +5 871.6 9 7.694 8×1023 272 328 1 +2 520.0 表 2 不同组分含量混合炸药烤燃计算结果
Table 2. Calculation results of composite explosives at various content of component
炸药组分 t/s T/K w(HMX):w(Kel-F)=95:5 10 965 508 w(HMX):w(TATB):w(Kel-F)=88:7:5 10 974 510 w(HMX):w(TATB):w(Kel-F)=78:17:5 10 988 510 w(HMX):w(TATB):w(Kel-F)=55:40:5 11 036 519 w(HMX):w(TATB):w(Kel-F)=38:57:5 11 095 523 w(HMX):w(TATB):w(Kel-F)=15:80:5 11 289 552 w(TATB):w(Kel-F)=95:5 15 588 620 -
[1] Semenov N N. Theories of combustion process[J]. Physics: Z, 1928, 48: 571-582. doi: 10.1007/BF01340021 [2] Jones D A, Parker R P. Heat flow calculations for the small-scale cook-off bomb test[R]. AD-A236829, 1991. [3] Wang Pei, Chen Lang, Wang Xiao-feng, et al. Cook-off test and numerical simulation for explosive heated by fire[J]. Journal of Beijing Institute of Technology, 2009, 18(2): 146-151. [4] Williams M R, Matei M V. The decomposition of some RDX and HMX based materials in the one-dimensional time to explosion apparatus. Part 1: Time to explosion and apparent activation energy[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 435-441. doi: 10.1002/prep.200600058 [5] 陈朗, 马欣, 黄毅民, 等.炸药多点测温烤燃实验和数值模拟[J].兵工学报, 2011, 32(10): 1230-1236.Chen Lang, Ma Xin, Huang Yi-min, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive[J]. Acta Armamentarii, 2011, 32(10): 1230-1236. [6] McGuire R R, Tarver C M. Chemical decomposition models for the thermal explosion of confined HMX, TATB, RDX and TNT explosives[C]//Proceedings of the 7th International Symposium on Detonation. Anapolis, MD, USA, 1981: 1-8. [7] Tarver C M, Koerner J G. Effects of endothermic binders on times to explosion of HMX-and TATB-based plastic bonded explosives[J]. Journal of Energetic Materials, 2008, 26(1): 1-28. [8] Tarver C M. Effects of exothermic binders on times to explosion of HMX-plastic bonded explosives[C]//Proceedings of the 14th International Symposium on Detonation. Coeur d'Alene Resort, Idaho, 2010: 861-870.. [9] Yoh J J, McClelland M A, Maienschein J L, et al. Simulating thermal explosion of cyclotrimethylenetrinitraminebased explosives: Model comparison with experiment[J]. Journal of Applied Physics, 2005, 97, 083504: 1-11. [10] Yoh J J, McClelland M A, Maienschein J L, et al. Simulating thermal explosion of octahydrotetranitrotetrazinebased explosives: Model comparison with experiment[J]. Journal of Applied Physics, 2006, 100, 073515: 1-9. [11] Dickson P M, Asay B W, Henson B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX 9501[C]//Shock Compression of Condensed Matter-1999.2000: 837-840. [12] Perry W L, Gunderson J A, Dickson P M. Application of a reversible four-step HMX kinetic model to an impactinduced friction ignition problem[C]//The 14th International Detonation Symposium. Coeur d'Alene Resort, Idaho, 2010. [13] Land T A, Siekhaus W J, Foltz M F, et al. Condensed-phase thermal decomposition of TATB investigated by AFM and STMBMS[C]//The 10th International Detonation Symposium. Boston, MA, 1993.