-
摘要: 在1.28LMIKE3管内对不同浓度的片状铝粉-空气混合物进行最小点火能测试;基于统计分析的Logistic回归模型,采用用以概率表示粉尘云最小点火能的计算方法,借助SPSS统计分析软件计算得到各浓度下片状铝粉点火概率随能量的分布曲线。研究结果表明:片状铝粉的最小点火能随浓度的增大先迅速减小后保持在一定的能量范围内,其爆炸敏感度比普通球状铝粉更高;与采用其他方法的计算结果相比,以概率表示特定物质的最小点火能更符合实际情况。Abstract: The minimum ignition energies of flake aluminum dust-air mixtures with different mass concentrations were tested in a 1.28-L MIKE3tube.According to the logistic regression model based on statistical analysis, the minimum ignition energy of the dust cloud was presented by the probability of ignition success.And the ignition probability-energy curves of the flake aluminum dust with different mass concentrations were calculated by means of the SPSS statistical analysis software.The investigated results display that as the mass concentration of the aluminum dust in the mixture increases, the minimum ignition energy first decreases quickly and then keep in a certain energy range.And the explosion sensitivity of the flake aluminum is higher than ordinary spherical one.Compared with the results calculated by other standard methods, the minimum ignition energy presented by the probability of ignition success is more consistent with the engineering test.
-
表 1 不同浓度片状铝粉的最小点火能计算结果
Table 1. Calculation result of minimum ignition energy under various concentration of falke aluminium dust
m/g ρ/(g·m-3) β0 β1/mJ-1 Em/mJ p=5% p=10% p=50% 0.4 192.98 -11.527 0.569 15.08 16.40 20.26 0.7 412.05 -59.748 8.069 7.04 7.133 7.40 1.0 657.89 -6.499 1.407 2.53 3.06 4.62 1.3 578.95 -4.894 0.786 2.48 3.44 6.22 1.6 570.18 -3.547 0.533 1.13 2.55 6.65 1.9 631.58 -4.125 0.652 1.81 2.96 6.33 表 2 不同浓度片状铝粉点火实验结果
Table 2. Result of igintion test with different concentrations
E/mJ 点火成功与否 p* 192.98 g/m3 412.05 g/m3 570.18 g/m3 578.95 g/m3 631.58 g/m3 657.89 g/m3 4.06 N N Y N N Y 1/3 1.88 N N N N N N 0 -
[1] Bane S P M, Zigeler J L, Boettcher P A, et al. Investigation of spark ignition in hydrogen, hexane and kerosene: experiment and simulation[C]//8th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions. Yokohama, Japan, 2010. [2] Bane S P M, Shepherd J E, Kwon E, et al. Statistical analysis of electrostatic spark ignition of lean H2-O2-air mixtures[C]//3rd International Conference on Hydrogen Safety. Ajaccio, Corsica, France, 2009: 16-18. [3] Bernard S, Lebecki K, Gillard P, et al. Statistical method for the determination of the ignition energy of dust cloud experimental validation[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1): 404-411. https://core.ac.uk/display/50616696 [4] Ngo M. Determination of the minimum ignition energy(MIE)of premixed propane/air[D]. Norway: Department of Physics and Technology University of Bergen, 2009. [5] 白春华, 梁慧敏, 李建平, 等.云雾爆轰[M].北京: 科学出版社, 2012: 17-50. [6] 蒋丽, 白春华, 刘庆明.气/固/液三相混合物燃烧转爆轰过程实验研究[J].爆炸与冲击, 2010, 30(6): 588-592. doi: 10.11883/1001-1455(2010)06-0583-05Jiang Li, Bai Chun-hua, Liu Qing-ming. Experimental study on DDT process in 3-phase suspensions of gas/solid particle/liquid mist mixture[J]. Explosion and Shock Waves, 2010, 30(6): 588-592. doi: 10.11883/1001-1455(2010)06-0583-05 [7] European Committee for Standardization(CEN). European standard EN 13821: 2002, Potentially explosive atmospheres-explosion prevention and protection-determination of minimum ignition energy of dust/air mixtures[S]. Brussels: CEN, 2002. [8] Cesana C, Siwek R. Mike 3: Minimum ignition energy 3.3[S]. Birsfelden, Switzerland: Kühner AG, 2003. [9] Janes A, Chaineaux J, Carson D, et al. MIKE 3versus HARTMANN apparatus: Comparison of measured minimum ignition energy(MIE)[J]. Journal of Hazardous Materials, 2008, 152(1): 32-39. doi: 10.1016/j.jhazmat.2007.06.066 [10] Kamenskihs V, Ng H D, Lee J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures[J]. Combustion and Flame, 2010, 157(9): 1795-1799. doi: 10.1016/j.combustflame.2010.02.014 [11] Nifuku M, Katoh H. Incendiary characteristics of electrostatic discharge for dust and gas explosion[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 547-551. doi: 10.1016/S0950-4230(01)00046-8 [12] 蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4): 432-438. doi: 10.3969/j.issn.1001-1455.2012.04.014Kuai Nian-sheng, Huang Wei-xing, Yuan Jing-jie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Waves, 2012, 32(4): 432-438. doi: 10.3969/j.issn.1001-1455.2012.04.014 [13] 何宁, 吴黎兵, 腾冲.统计分析系统SAS与SPSS[M].北京: 机械工业出版社, 2008: 155-157. [14] 周国泰, 吕海燕, 张海峰, 等.危险化学品安全技术全书[M].北京: 化学工业出版社, 1997: 827-828. [15] Choi K, Sakurai N, Yanagida K, et al. Ignitability of aluminous coating powders due to electrostatic spark[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1): 183-185. doi: 10.1016/j.jlp.2009.06.002 [16] 国家技术监督局. GB/T 16428-1996, 粉尘云最小着火能测定方法[S].北京: 中国标准出版社, 1997. [17] International Electrotechnical Commission. IEC international standard CEI 61241-2-3, electrical apparatus for use in the presence of combustible dust, Part 2: Test methods, Section 3: Method of determining minimum ignition energy of dust/air mixtures[S]. Geneva: IEC, 1994. [18] American Society for Testing and Materials. Standards: E2019-02, standard test method for minimum ignition energy of a dust cloud in air[S]. West Conshohocken: ASTM, 2002.