• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

采用Logistic统计法分析片状铝粉的最小点火能

李磊 刘庆明 高克平

李磊, 刘庆明, 高克平. 采用Logistic统计法分析片状铝粉的最小点火能[J]. 爆炸与冲击, 2014, 34(2): 161-166. doi: 10.11883/1001-1455(2014)02-0161-06
引用本文: 李磊, 刘庆明, 高克平. 采用Logistic统计法分析片状铝粉的最小点火能[J]. 爆炸与冲击, 2014, 34(2): 161-166. doi: 10.11883/1001-1455(2014)02-0161-06
Li lei, Liu Qing-ming, Gao Ke-ping. Logistic regression analysis on minimum ignition energy of flake aluminum[J]. Explosion And Shock Waves, 2014, 34(2): 161-166. doi: 10.11883/1001-1455(2014)02-0161-06
Citation: Li lei, Liu Qing-ming, Gao Ke-ping. Logistic regression analysis on minimum ignition energy of flake aluminum[J]. Explosion And Shock Waves, 2014, 34(2): 161-166. doi: 10.11883/1001-1455(2014)02-0161-06

采用Logistic统计法分析片状铝粉的最小点火能

doi: 10.11883/1001-1455(2014)02-0161-06
基金项目: 国家重点基础研究计划(973计划)项目(2011CB706900);爆炸科学与技术国家重点实验室重点课题基金项目(YBKT11-03)
详细信息
    作者简介:

    李磊(1988—), 男, 硕士研究生

  • 中图分类号: O381

Logistic regression analysis on minimum ignition energy of flake aluminum

Funds: Supported bythe National Basic Program of China (973 Program) (2011CB706900)
More Information
  • 摘要: 在1.28LMIKE3管内对不同浓度的片状铝粉-空气混合物进行最小点火能测试;基于统计分析的Logistic回归模型,采用用以概率表示粉尘云最小点火能的计算方法,借助SPSS统计分析软件计算得到各浓度下片状铝粉点火概率随能量的分布曲线。研究结果表明:片状铝粉的最小点火能随浓度的增大先迅速减小后保持在一定的能量范围内,其爆炸敏感度比普通球状铝粉更高;与采用其他方法的计算结果相比,以概率表示特定物质的最小点火能更符合实际情况。
  • 图  1  粉尘爆炸测试装置——MIKE3管

    Figure  1.  Dust explosion test apparatus-MIKE3tube

    图  2  粉尘爆炸测试装置点火电路

    Figure  2.  Ignition circuit of dust explosion test apparatus

    图  3  不同浓度片状铝粉点火试验结果及最小点火能概率分布曲线

    Figure  3.  Result of ignition test under various concentrations of falke aluminium dust and probability distribution of the minimum ignition energy

    图  4  最小点火能随浓度的变化曲线

    Figure  4.  Changes of the minimum ignition energy with concentration

    表  1  不同浓度片状铝粉的最小点火能计算结果

    Table  1.   Calculation result of minimum ignition energy under various concentration of falke aluminium dust

    m/gρ/(g·m-3)β0β1/mJ-1Em/mJ
    p=5%p=10%p=50%
    0.4192.98-11.5270.56915.0816.4020.26
    0.7412.05-59.7488.0697.047.1337.40
    1.0657.89-6.4991.4072.533.064.62
    1.3578.95-4.8940.7862.483.446.22
    1.6570.18-3.5470.5331.132.556.65
    1.9631.58-4.1250.6521.812.966.33
    下载: 导出CSV

    表  2  不同浓度片状铝粉点火实验结果

    Table  2.   Result of igintion test with different concentrations

    E/mJ点火成功与否p*
    192.98 g/m3412.05 g/m3570.18 g/m3578.95 g/m3631.58 g/m3657.89 g/m3
    4.06NNYNNY1/3
    1.88NNNNNN0
    下载: 导出CSV
  • [1] Bane S P M, Zigeler J L, Boettcher P A, et al. Investigation of spark ignition in hydrogen, hexane and kerosene: experiment and simulation[C]//8th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions. Yokohama, Japan, 2010.
    [2] Bane S P M, Shepherd J E, Kwon E, et al. Statistical analysis of electrostatic spark ignition of lean H2-O2-air mixtures[C]//3rd International Conference on Hydrogen Safety. Ajaccio, Corsica, France, 2009: 16-18.
    [3] Bernard S, Lebecki K, Gillard P, et al. Statistical method for the determination of the ignition energy of dust cloud experimental validation[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1): 404-411. https://core.ac.uk/display/50616696
    [4] Ngo M. Determination of the minimum ignition energy(MIE)of premixed propane/air[D]. Norway: Department of Physics and Technology University of Bergen, 2009.
    [5] 白春华, 梁慧敏, 李建平, 等.云雾爆轰[M].北京: 科学出版社, 2012: 17-50.
    [6] 蒋丽, 白春华, 刘庆明.气/固/液三相混合物燃烧转爆轰过程实验研究[J].爆炸与冲击, 2010, 30(6): 588-592. doi: 10.11883/1001-1455(2010)06-0583-05

    Jiang Li, Bai Chun-hua, Liu Qing-ming. Experimental study on DDT process in 3-phase suspensions of gas/solid particle/liquid mist mixture[J]. Explosion and Shock Waves, 2010, 30(6): 588-592. doi: 10.11883/1001-1455(2010)06-0583-05
    [7] European Committee for Standardization(CEN). European standard EN 13821: 2002, Potentially explosive atmospheres-explosion prevention and protection-determination of minimum ignition energy of dust/air mixtures[S]. Brussels: CEN, 2002.
    [8] Cesana C, Siwek R. Mike 3: Minimum ignition energy 3.3[S]. Birsfelden, Switzerland: Kühner AG, 2003.
    [9] Janes A, Chaineaux J, Carson D, et al. MIKE 3versus HARTMANN apparatus: Comparison of measured minimum ignition energy(MIE)[J]. Journal of Hazardous Materials, 2008, 152(1): 32-39. doi: 10.1016/j.jhazmat.2007.06.066
    [10] Kamenskihs V, Ng H D, Lee J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures[J]. Combustion and Flame, 2010, 157(9): 1795-1799. doi: 10.1016/j.combustflame.2010.02.014
    [11] Nifuku M, Katoh H. Incendiary characteristics of electrostatic discharge for dust and gas explosion[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 547-551. doi: 10.1016/S0950-4230(01)00046-8
    [12] 蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4): 432-438. doi: 10.3969/j.issn.1001-1455.2012.04.014

    Kuai Nian-sheng, Huang Wei-xing, Yuan Jing-jie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Waves, 2012, 32(4): 432-438. doi: 10.3969/j.issn.1001-1455.2012.04.014
    [13] 何宁, 吴黎兵, 腾冲.统计分析系统SAS与SPSS[M].北京: 机械工业出版社, 2008: 155-157.
    [14] 周国泰, 吕海燕, 张海峰, 等.危险化学品安全技术全书[M].北京: 化学工业出版社, 1997: 827-828.
    [15] Choi K, Sakurai N, Yanagida K, et al. Ignitability of aluminous coating powders due to electrostatic spark[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1): 183-185. doi: 10.1016/j.jlp.2009.06.002
    [16] 国家技术监督局. GB/T 16428-1996, 粉尘云最小着火能测定方法[S].北京: 中国标准出版社, 1997.
    [17] International Electrotechnical Commission. IEC international standard CEI 61241-2-3, electrical apparatus for use in the presence of combustible dust, Part 2: Test methods, Section 3: Method of determining minimum ignition energy of dust/air mixtures[S]. Geneva: IEC, 1994.
    [18] American Society for Testing and Materials. Standards: E2019-02, standard test method for minimum ignition energy of a dust cloud in air[S]. West Conshohocken: ASTM, 2002.
  • 期刊类型引用(2)

    1. 钱松. 粉尘爆炸危险场所防爆安全的思考. 电气防爆. 2018(01): 24-26 . 百度学术
    2. 李雨成,刘天奇,周磊. 不同变质程度煤尘云最小点火能试验研究. 辽宁工程技术大学学报(自然科学版). 2017(08): 796-800 . 百度学术

    其他类型引用(1)

  • 加载中
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性
韦箫 等, 爆炸与冲击, 2025
增材制造用铝及铝硅合金粉尘的爆炸特性
赵江平 等, 爆炸与冲击, 2025
Zl114a铝合金本构关系与失效准则参数的确定
谭毅 等, 爆炸与冲击, 2024
Al基纳米粉末冲击加载微观组织演变机制
安豪 等, 高压物理学报, 2025
金属氧化物对铝热剂燃烧特性的影响
蔡悦 等, 高压物理学报, 2025
不同发火电压下工业电子雷管引火药头发火时间试验研究
关佳佳 等, 高压物理学报, 2025
Process, material, and regulatory considerations for 3d printed medical devices and tissue constructs
Ng, Wei Long et al., ENGINEERING, 2024
Nucleation and growth of l12-al3re particles in aluminum alloys: a first-principles study*
JOURNAL OF RARE EARTHS, 2023
Probing the combustion characteristics of micron-sized aluminum particles enhanced with graph ene fluoride
COMBUSTION AND FLAME, 2024
Powered by
图(4) / 表(2)
计量
  • 文章访问数:  3272
  • HTML全文浏览量:  411
  • PDF下载量:  510
  • 被引次数: 3
出版历程
  • 收稿日期:  2012-09-12
  • 修回日期:  2012-12-24
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回