• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

四边手性蜂窝动态压溃行为的数值模拟

卢子兴 李康

张振华, 朱锡, 白雪飞. 水下爆炸冲击波的数值模拟研究[J]. 爆炸与冲击, 2004, 24(2): 182-188. doi: 10.11883/1001-1455(2004)02-0182-7
引用本文: 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07
Lu Zi-xing, Li Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion And Shock Waves, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07
Citation: Lu Zi-xing, Li Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion And Shock Waves, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07

四边手性蜂窝动态压溃行为的数值模拟

doi: 10.11883/1001-1455(2014)02-0181-07
基金项目: 国家自然科学基金项目(10932001,11272030)
详细信息
    作者简介:

    卢子兴(1960—), 男, 博士, 教授, 博士生导师

  • 中图分类号: O347

Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs

Funds: Supported by National Natural Science Foundationof China (10932001, 11272030)
More Information
  • 摘要: 建立了四边手性蜂窝的有限元模型,采用数值模拟方法研究了四边手性蜂窝在不同冲击速度下的变形模式和能量吸收等动力学响应特性,并同普通六边形蜂窝的冲击行为进行了对比。计算得到了这2种蜂窝的变形模式图、动力响应曲线和能量吸收曲线。模拟结果表明:低速冲击下,四边形手性蜂窝的变形模式为“Z”字形;高速冲击下,四边手性蜂窝的变形模式与普通蜂窝的“I”字形模式类似;在适中速度的冲击下,四边手性蜂窝表现出兼具高速冲击和低速冲击特征的一种过渡态变形模式;随着冲击速度的提高,局部变形带由固定端向冲击端移动,并且能量吸收能力也随之提高;在中、低速度的冲击下,能够观察到拉胀材料压缩时特有的“缩颈”现象。
  • 图  1  四边手性蜂窝单元

    Figure  1.  Diagram of tetrachiral cell

    图  2  蜂窝材料的有限元模型

    Figure  2.  FE models of honeycombs

    图  3  冲击速度为7.0m/s时六边形蜂窝的变形模式

    Figure  3.  Deformation modes of hexagonal honeycombs under the impact velocity of 7.0m/s

    图  4  冲击速度为70.0m/s时六边形蜂窝的变形模式

    Figure  4.  Deformation modes of hexagonal honeycombs under the impact velocity of 70.0m/s

    图  5  冲击速度为3.5m/s是四边手性蜂窝的变形模式

    Figure  5.  Deformation modes of tetrachiral honeycombs under the impact velocity of 3.5m/s

    图  6  冲击速度为56.0m/s是四边手性蜂窝的变形模式

    Figure  6.  Deformation modes of tetrachiral honeycombs under the impact velocity of 56.0m/s

    图  7  冲击速度为140.0m/s是四边手性蜂窝的变形模式

    Figure  7.  Deformation modes of tetrachiral honeycombs under the impact velocity of 140.0m/s

    图  8  不同速度冲击下四边手性蜂窝结构的压缩反力和压缩位移的变化曲线

    Figure  8.  Dynamic force-displacement curves of tetrachiral honeycombs under different impact velocities

    图  9  不同速度冲击下四边手性蜂窝结构的能量吸收曲线

    Figure  9.  Energy absorption for tetrachiral honeycombs under different impact velocities

    图  10  单位体积的四边手性蜂窝结构与正六边形蜂窝的能量吸收能力

    Figure  10.  Energy absorption per unit volume for tetrachiral and hexagonal honeycombs

  • [1] Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
    [2] Liu Q. Literature review: Materials with negative poisson's ratios and potential applications to aerospace and defence[R]. Victoria, Australia: Defence Science and Technology Organisation, 2006.
    [3] Alderson A, Alderson K L. Auxetic materials[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221: 565-575. doi: 10.1243/09544100JAERO185
    [4] 卢子兴, 刘强, 杨振宇.拉胀泡沫材料力学性能[J].宇航材料工艺, 2010(1): 7-13.

    Lu Zi-xing, Liu Qiang, Yang Zhen-yu. Mechanical properties of auxetic foams[J]. Aerospace Materials & Technology, 2010(1): 7-13.
    [5] Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio[J]. Composites Science and Technology, 2012, 58: 140-153. https://www.sciencedirect.com/science/article/pii/S092702561200078X
    [6] 卢子兴, 郭宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报, 2003, 29(11): 978-983. doi: 10.3969/j.issn.1001-5965.2003.11.005

    Lu Zi-xing, Guo Yu. Brief review of studies on the mechanical behavior of metallic foams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 978-983. doi: 10.3969/j.issn.1001-5965.2003.11.005
    [7] 刘颖, 何章权, 吴鹤翔, 等.分层递变梯度蜂窝材料的面内冲击性能[J].爆炸与冲击, 2011, 31(3): 225-231. doi: 10.11883/1001-1455(2011)03-0225-07

    Liu Ying, He Zhang-quan, Wu He-xiang, et al. In-plane dynamic crushing of functionally layered metal honeycombs[J]. Explosion and Shock Waves, 2011, 31(3): 225-231. doi: 10.11883/1001-1455(2011)03-0225-07
    [8] Amin A, Hamid N H, Ashkan V. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures[J]. International Journal of Solids and Structures, 2011, 48(3/4): 506-516. https://www.sciencedirect.com/science/article/pii/S0020768310003720
    [9] Prall D, Lakes R S. Properties of a chiral honeycomb with a Poisson's ratio of-1[J]. International Journal of Mechanical and Science, 1996, 39(3): 305-314. https://www.sciencedirect.com/science/article/pii/S0020740396000252
    [10] Alderson A, Alderson K L, Attard D, et al. Elastic constants of 3-, 4-and 6-connected chiral and antichiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70(7): 1042-1048. doi: 10.1016/j.compscitech.2009.07.009
    [11] Spadoni A, Ruzzene M. Elasto-static micropolar behavior of a chiral auxetic lattice[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(1): 156-171. doi: 10.1016/j.jmps.2011.09.012
    [12] Dos Reis F, Ganghoffer J F. Equivalent mechanical properties of auxetic lattices from discrete homogenization[J]. Computational Materials Science, 2012, 51(1): 314-321. doi: 10.1016/j.commatsci.2011.07.014
    [13] Dirrenberger J, Forest S, Jeulin D, et al. Homogenization of periodic auxetic materials[J]. Procedia Engineering, 2011, 10: 1847-1852. doi: 10.1016/j.proeng.2011.04.307
    [14] 卢子兴, 赵亚斌.一种有负泊松比效应的二维多胞材料力学模型[J].北京航空航天大学学报, 2006, 32(5): 594-597. doi: 10.3969/j.issn.1001-5965.2006.05.022

    Lu Zi-xing, Zhao Ya-bin. Mechanical model of two-dimensional cellular materials with negative Poisson's ratio[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5): 594-597. doi: 10.3969/j.issn.1001-5965.2006.05.022
    [15] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
  • 期刊类型引用(15)

    1. 李金矿,万文玉,刘闯. 形状记忆合金蜂窝结构抗冲击性能研究. 应用数学和力学. 2024(01): 34-44 . 百度学术
    2. 邓小林. 连续梯变拉胀蜂窝面内冲击动力学性能研究. 机械设计与制造. 2021(04): 195-200 . 百度学术
    3. 李谱,乐京霞,李晓彬,彭帅. 厚度梯度型箭形负泊松比蜂窝基座抗冲击性能. 爆炸与冲击. 2020(07): 27-37 . 本站查看
    4. 张权,高松林,杜志鹏,张磊,李晓彬. 星形梯度负泊松比蜂窝结构面内冲击动态响应. 武汉理工大学学报(交通科学与工程版). 2020(05): 886-891 . 百度学术
    5. 卢子兴,王欢,杨振宇,李响. 星型-箭头蜂窝结构的面内动态压溃行为. 复合材料学报. 2019(08): 1893-1900 . 百度学术
    6. 苏继龙,吴金东,刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展. 材料工程. 2019(08): 49-58 . 百度学术
    7. 杨姝,江峰,丁宏飞,于晨,亓昌. 手性蜂窝夹芯概念发动机罩行人头部保护性能仿真. 华南理工大学学报(自然科学版). 2019(12): 38-42+61 . 百度学术
    8. 卢子兴,武文博. 基于旋转三角形模型的负泊松比蜂窝材料面内动态压溃行为数值模拟. 兵工学报. 2018(01): 153-160 . 百度学术
    9. 杜义贤,杜大翔,李涵钊,李荣,尹艺峰,田启华. 极限负泊松比的微结构拓扑优化. 机械设计. 2018(04): 62-66 . 百度学术
    10. 杜大翔,杜义贤,尹艺峰,周鹏,田启华. 网格数及体积比对微结构拓扑构型的影响分析. 三峡大学学报(自然科学版). 2017(02): 89-92+112 . 百度学术
    11. 李响,周幼辉,童冠. 类蜂窝结构的面内冲击特性研究. 西安交通大学学报. 2017(03): 80-86+110 . 百度学术
    12. 崔世堂,王波,张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究. 应用力学学报. 2017(05): 919-924+1015 . 百度学术
    13. 邓小林,刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析. 振动与冲击. 2017(13): 103-109+154 . 百度学术
    14. 崔世堂,倪小军,张科. 拉胀三明治梁在爆炸载荷作用下的动态力学性能研究. 振动与冲击. 2017(13): 172-177 . 百度学术
    15. 邓小林. 分层梯变负泊松比蜂窝结构的面内冲击动力学分析. 机械设计与制造. 2016(04): 219-223 . 百度学术

    其他类型引用(34)

  • 加载中
图(10)
计量
  • 文章访问数:  3464
  • HTML全文浏览量:  465
  • PDF下载量:  498
  • 被引次数: 49
出版历程
  • 收稿日期:  2012-09-13
  • 修回日期:  2013-03-29
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回