无限弹性土体中洞室在反平面冲击荷载作用下的瞬态响应

翟朝娇 夏唐代 陈炜昀 杜国庆

翟朝娇, 夏唐代, 陈炜昀, 杜国庆. 无限弹性土体中洞室在反平面冲击荷载作用下的瞬态响应[J]. 爆炸与冲击, 2014, 34(2): 209-215. doi: 10.11883/1001-1455(2014)02-0209-07
引用本文: 翟朝娇, 夏唐代, 陈炜昀, 杜国庆. 无限弹性土体中洞室在反平面冲击荷载作用下的瞬态响应[J]. 爆炸与冲击, 2014, 34(2): 209-215. doi: 10.11883/1001-1455(2014)02-0209-07
Zhai Chao -jiao, Xia Tang -dai, Chen Wei -yun, Du Guo -qing. Transient response of cavity in infinite elastic soil to anti -plane impact[J]. Explosion And Shock Waves, 2014, 34(2): 209-215. doi: 10.11883/1001-1455(2014)02-0209-07
Citation: Zhai Chao -jiao, Xia Tang -dai, Chen Wei -yun, Du Guo -qing. Transient response of cavity in infinite elastic soil to anti -plane impact[J]. Explosion And Shock Waves, 2014, 34(2): 209-215. doi: 10.11883/1001-1455(2014)02-0209-07

无限弹性土体中洞室在反平面冲击荷载作用下的瞬态响应

doi: 10.11883/1001-1455(2014)02-0209-07
详细信息
    作者简介:

    翟朝娇(1987-), 女, 博士研究生

  • 中图分类号: O347

Transient response of cavity in infinite elastic soil to anti -plane impact

More Information
  • 摘要: 为了探讨无限弹性土体内圆柱形洞室在突加反平面冲击荷载作用下的瞬态响应,利用Laplace变换及围道积分逆变换,得到土体位移和应力的一般解析表达式,并给出了数值解。在时域内分析了无限弹性土体内圆柱形孔洞在轴向荷载作用下的动力响应,并将计算结果与采用拉普拉斯数值反变换得到的结果以及静力情况下的结果作了比较。研究结果显示:波到达后,该点土体的应力和位移均瞬间增大,随后慢慢减小,并逐渐趋于静力值;波向外发散传播,并沿半径方向衰减,衰减速度比静力情况的应力衰减慢。
  • 图  1  计算模型

    Figure  1.  Computation model

    图  2  计算模型

    Figure  2.  Computation model

    图  3  应力时程曲线

    Figure  3.  Stress -time curves

    图  4  位移时程曲线

    Figure  4.  Displacement -time curves

    图  5  应力随传播距离的衰减曲线

    Figure  5.  Stress attenuation against propagation distance

    图  6  位移随传播距离的衰减曲线

    Figure  6.  Displacement attenuation against propagation distance

    图  7  应力时程曲线比较

    Figure  7.  Comparison of stress -time curves

    图  8  位移时程曲线比较

    Figure  8.  Comparison of displacement -time curves

  • [1] Pao Yih-hsing, Mow C C. Diffraction of elastic waves and dynamic stress concentrations[M]. New York, USA: Adam Hilger Limited, 1973.
    [2] Lee J, Mal A K. A volume integral equation technique for multiple scattering problems in elastodynamics[J]. Applied Mathematics and Computation, 1995, 67(1/2/3): 135-159. https://www.sciencedirect.com/science/article/pii/009630039400057B
    [3] Davis C A, Lee V W, Bardet J P. Transverse response of underground cavities and pipes to incident SV waves[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 395-410. doi: 10.1002/eqe.14
    [4] Iakovlev S. Interaction of a spherical shock wave and a submerged fluid-filled circular cylindrical shell[J]. Journal of Sound and Vibration, 2002, 255(4): 615-633. doi: 10.1006/jsvi.2001.4181
    [5] Manolis G D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM[J]. Journal of Sound and Vibration, 2003, 266(2): 281-305. https://www.sciencedirect.com/science/article/pii/S0022460X03001755
    [6] Eason G. Propagation of waves from spherical and cylindrical cavities[J]. The Journal of Applied Mathematics and Physics, 1963, 14(1): 12-23. doi: 10.1007/BF01601142
    [7] Eason G. The propagation of waves from a cylindrical cavity[J]. Journal of Composite Materials, 1973, 7(1): 90-99. doi: 10.1177/002199837300700107
    [8] 张庆元, 战人瑞.爆轰载荷作用下球形空腔的动力响应[J].爆炸与冲击, 1994, 14(2): 182-185. http://www.bzycj.cn/article/id/10625

    Zhang Qing-yuan, Zhan Ren-rui. Dynamic response of a spherical cavity subjected to blast loads[J]. Explosion and Shock Waves, 1994, 14(2): 182-185. http://www.bzycj.cn/article/id/10625
    [9] 刘国利, 赵会滨, 许贻燕.阶跃SH波作用下半圆形凹陷地形的瞬态反应:长期解[J].地震工程与工程振动, 1995, 15(1): 92-99.

    Liu Guo-li, Zhao Hui-bin, Xu Yi-yan. Transient response of semi-circular canyon under step SH wave: Long term solution[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 92-99.
    [10] Herman H, Klosner J M. Transient response of a periodically supported cylindrical shell Immersed in a fluid medium[J]. Journal of Applied Mechanics, 1965, 32(3): 562-568. doi: 10.1115/1.3627259
    [11] Geers T L. Excitation of an elastic cylindrical shell by a transient acoustic wave[J]. Journal of Applied Mechanics, 1969, 36(3): 459-469. doi: 10.1115/1.3564702
    [12] 杨峻, 宫全美, 吴世明, 等.饱和土体中圆柱形孔洞的动力分析[J].上海力学, 1996, 17(1): 37-45.

    Yang Jun, Gong Qun-mei, Wu Shi-ming, et al. Dynamic analysis of cylindrical holes in saturated soil[J]. Shanghai Mechanics, 1996, 17(1): 37-45.
    [13] Forrestal M J, Sagartz M J. Radiated pressure in an acoustic medium produced by pulsed cylindrical and spherical shells[J]. Journal of Applied Mechanics, 1971, 38(4): 1057-1060. doi: 10.1115/1.3408916
    [14] Moodie T B, Barclay D W. Wave propagation from a cylindrical cavity[J]. Acta Mechanica, 1977, 27(1/2/3/4): 103-120.
    [15] Moodie T B, Haddow J B, Mioduchowski A, et al. Plane elastic waves henerated by dynamical loading applied to edge of circular hole[J]. Journal of Applied Mechanics, 1981, 48(3): 577-581. doi: 10.1115/1.3157677
    [16] Akkas N, Erdogogan F. The residual variable method applied to the diffusion equation in cylindrical coordinates[J]. Acta Mechanic, 1989, 79(3/4): 207-219. doi: 10.1007/BF01187263
    [17] Zakout U, Akkas N. Transient response of a cylindrical cavity with and without a bonded shell in an infinite elastic medium[J]. International Journal of Engineering Science, 1997, 35(12/13): 1203-1220. https://www.sciencedirect.com/science/article/pii/S0020722597000116
    [18] Feldgun V R, Kochetkov A V, Karinski Y S, et al. Internal blast loading in a buried lined tunnel[J]. International Journal of Impact Engineering, 2008, 35(3): 172-183. doi: 10.1016/j.ijimpeng.2007.01.001
    [19] 高盟, 高广运, 王滢, 等.内部荷载作用下圆柱形孔洞的动力响应解答[J].力学季刊, 2009, 30(2): 266-272.

    Gao Meng, Gao Guang-yun, Wang Ying, et al. Solution on dynamic response of a cylindrical cavity under internal load[J]. Chinese Quarterly of Mechanics, 2009, 30(2): 266-272.
    [20] 高盟, 高广运, 王滢, 等.饱和土与衬砌动力相互作用的圆柱形孔洞内源问题解答[J].固体力学学报, 2009, 30(5): 481-488.

    Gao Meng, Gao Guang-yun, Wang Ying, et al. Dynamic solutions of cylindrical cavities with the lining under internal load in the saturated soil[J]. Chinese Journal of Solid Mechanics, 2009, 30(5): 481-487.
    [21] 蔡袁强, 陈成振, 孙宏磊.黏弹性饱和土中隧道在爆炸荷载作用下的动力响应[J].浙江大学学报:工学版, 2011, 45(9): 1657-1663. doi: 10.3785/j.issn.1008-973X.2011.09.024

    Cai Yuan-qiang, Chen Cheng-zhen, Sun Hong-lei. Dynamic response of tunnel in viscoelastic saturated soil subjec-ted to blast loads[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(9): 1657-1663. doi: 10.3785/j.issn.1008-973X.2011.09.024
    [22] Haddow J B, Lorimer S A, Tait R J. Nonlinear axial shear wave propagation in a hyperelastic incompressible solid[J]. Acta Mechanica, 1987, 66(1/2/3/4): 205-216. doi: 10.1007/BF01184294
    [23] Haddow J B, Jiang L. Finite amplitude azimuthal shear waves in a compressible hyperelastic solid[J]. Journal of Applied Mechanics, 2001, 68(2): 145-152. doi: 10.1115/1.1334862
    [24] Watanabe K, Payton R G. SH wave in a cylindrically anisotropic elastic solid a general solution for a point source[J]. Wave Motion, 1996, 25(2): 197-212. https://www.sciencedirect.com/science/article/pii/S0165212596000418
    [25] Barclay D W. Wavefront expansion for non-linear axial shear wave propagation[J]. International Journal of Nonlinear Mechanics, 1998, 33(2): 259-274. doi: 10.1016/S0020-7462(97)00016-4
    [26] Barclay D W. Shock front analysis for axial shear wave propagation in a hyperelastic incompressible solid[J]. Acta Mechanica, 1999, 133(1/2/3/4): 105-129. doi: 10.1007%2FBF01179013
    [27] Barclay D W. Shock calculations for axially symmetric shear wave propagation in a hyperelastic incompressible solid[J]. International Journal of Non-linear Mechanics, 2004, 39(1): 101-121. doi: 10.1016/S0020-7462(02)00141-5
    [28] Durbin F. Numerical inversion of Laplace transformation: An efficient improvement to Durbin and Abatep's method[J]. The Computer Journal, 1974, 17(4): 371-376. doi: 10.1093/comjnl/17.4.371
    [29] 梁昆淼.数学物理方法[M].北京: 高等教育出版社, 2010.
    [30] Watson G N. Theory of Bessel function[M]. Cambridge, UK: Cambridge University Press, 1995.
  • 加载中
图(8)
计量
  • 文章访问数:  3174
  • HTML全文浏览量:  369
  • PDF下载量:  490
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-17
  • 修回日期:  2013-03-04
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回