高流态地质聚合物混凝土的高应变率动态压缩变形特性

罗鑫 许金余 苏灏扬 李为民 白二雷

罗鑫, 许金余, 苏灏扬, 李为民, 白二雷. 高流态地质聚合物混凝土的高应变率动态压缩变形特性[J]. 爆炸与冲击, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07
引用本文: 罗鑫, 许金余, 苏灏扬, 李为民, 白二雷. 高流态地质聚合物混凝土的高应变率动态压缩变形特性[J]. 爆炸与冲击, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07
Luo Xin, Xu Jin-yu, Su Hao-yang, Li Wei-min, Bai Er-lei. Deformation behaviors of highly-fluidized geopolymer concrete during dynamic compression at high strain rates[J]. Explosion And Shock Waves, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07
Citation: Luo Xin, Xu Jin-yu, Su Hao-yang, Li Wei-min, Bai Er-lei. Deformation behaviors of highly-fluidized geopolymer concrete during dynamic compression at high strain rates[J]. Explosion And Shock Waves, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07

高流态地质聚合物混凝土的高应变率动态压缩变形特性

doi: 10.11883/1001-1455(2014)02-0216-07
基金项目: 国家自然科学基金项目(51208507, 51378497);陕西省自然科学基金项目(2011gm6014)
详细信息
    作者简介:

    罗鑫(1986—), 男, 博士研究生

  • 中图分类号: O347; TU528.572

Deformation behaviors of highly-fluidized geopolymer concrete during dynamic compression at high strain rates

Funds: Supported by the National Natural Science Foundation of China (51208507, 51378497)
More Information
  • 摘要: 以矿渣、粉煤灰为原材料,以NaOH、Na2CO3为碱激发剂,制备了强度等级为C30的高流态地质聚合物混凝土(highly-fluidized geopolymer concrete,HFGC),运用波形整形技术改进了Ø100mm SHPB实验装置,通过参数控制保证应力均匀和恒应变率加载,对HFGC开展了动态压缩实验,分析了HFGC在冲击压缩荷载下的变形特性。HFGC属于应变率敏感材料和脆性材料,高应变率作用下,HFGC的典型应力应变曲线包括压实挤密阶段、弹性阶段和软化、屈服阶段。在10~100s-1的应变率范围内,HFGC的峰值应变εc随应变率的变化表现出明显的冲击韧化效应,εc随应变率的升高先增大后减小,满足二次函数关系εc=-1.2×10-6+1.6×10-4+0.001 7,变形特性变化的临界应变率为66.7s-1。HFGC的动态弹性模量均低于其在准静态下的弹性模量。
  • 图  1  典型的应变率时程曲线

    Figure  1.  Typical strain rate-time curves

    图  2  典型的破坏形态[22]

    Figure  2.  Typical facture morphology[22]

    图  3  不同应变率下HFGC试样的应力应变曲线

    Figure  3.  Stress-strain curves of HFGC specimens at different strain rates

    图  4  高应变率下HFGC试样典型的应力应变曲线

    Figure  4.  Typical stress-strain curve of HFGC specimens at high strain rate

    图  5  峰值应变随平均应变率的变化

    Figure  5.  Peak strain varied with mean strain rate

    图  6  弹性模量随平均应变率的变化

    Figure  6.  Elastic module varied with mean strain rate

  • [1] Davidovits J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis and Calorimetry, 1989, 35(2): 429-441. doi: 10.1007/BF01904446
    [2] Roy D M. New strong cement materials: Chemically bonded ceramics[J]. Science, 1987, 235(4789): 651-658. doi: 10.1126/science.235.4789.651
    [3] Miranda J M, Fernández-Jiménez A, González J A, et al. Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research, 2005, 35(6): 1210-1217. doi: 10.1016/j.cemconres.2004.07.030
    [4] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 2005, 35(6): 1233-1246. doi: 10.1016/j.cemconres.2004.09.002
    [5] Davidovits J. Geopolymers: Inorganic polymeric new materials[J]. Journal of Thermal Analysis and Calorimetry, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
    [6] Davidovits J. Properties of geopolymer cements[C]//First International Conference on Alkaline Cements and Concretes. 1994: 131-149.
    [7] Palomo A, Maclas A, Blaneo M T, et al. Physical chemical and mechanical characterization of geopolymers[C]//Proceedings of the 9th International Congress on the Chemistry of Cement. 1992: 505-511.
    [8] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报, 1997(6): 3-9.
    [9] 清华大学老科技工作者协会, 北京交通大学土建学院. CECS207: 2006高性能混凝土应用技术规程[S].北京: 中国计划出版社, 2006: 2.
    [10] 许金余, 李为民, 范飞林, 等.地质聚合物混凝土的冲击力学性能研究[J].振动与冲击, 2009, 28(1): 46-51. doi: 10.3969/j.issn.1000-3835.2009.01.011

    Xu Jin-yu, Li Wei-min, Fan Fei-lin, et al. Study on mechanical properties of geopolymeric concrete under impact loading[J]. Journal of Vibration and Shock, 2009, 28(1): 46-51. doi: 10.3969/j.issn.1000-3835.2009.01.011
    [11] 李为民, 许金余.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报, 2008, 36(4): 476-481. doi: 10.3321/j.issn:0454-5648.2008.04.009

    Li Wei-min, Xu Jin-yu. Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(4): 476-481. doi: 10.3321/j.issn:0454-5648.2008.04.009
    [12] Luo Xin, Xu Jin-yu, Bai Er-lei, et al. Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system[J]. Construction and Building Materials, 2012, 29: 482-486. doi: 10.1016/j.conbuildmat.2011.09.021
    [13] Li Wei-min, Xu Jin-yu. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mmdiameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513-514: 145-153. doi: 10.1016/j.msea.2009.02.033
    [14] 蔡瑞环, 欧阳东, 黄华县, 等.搅拌工艺对混凝土强度及氯离子渗透性影响实验研究[J].水运工程, 2008(3): 9-13. doi: 10.3969/j.issn.1002-4972.2008.03.003

    Cai Rui-huan, Ouyang Dong, Huang Hua-xian, et al. Experimental study on influence of chloride ion's permeability and strength of concrete by different mixing technologies[J]. Port and Waterway Engineering, 2008(3): 9-13. doi: 10.3969/j.issn.1002-4972.2008.03.003
    [15] 湖南大学, 天津大学, 同济大学, 等.土木工程材料[M].北京: 中国建筑工业出版社, 2002: 90-101.
    [16] 陶俊林. SHPB实验技术若干问题研究[D].北京: 中国工程物理研究院, 2005: 21-29.
    [17] Lok T S, Li X B, Liu D, et al. Testing and response of large diameter brittle materials subjected to high strain rate[J]. Journal of Materials in Civil Engineering, 2001, 14(3): 262-269.
    [18] 胡泽斌, 许金余, 彭高丰, 等.冲击荷载作用下聚苯乙烯混凝土的吸能特性[J].硅酸盐学报, 2010, 38(7): 1173-1178.

    Hu Ze-bin, Xu Jin-yu, Peng Gao-feng, et al. Energy-absorption property of expanded polystyrene concrete under impact[J]. Journal of the Chinese Ceramic Society, 2011, 38(7): 1173-1178.
    [19] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106. doi: 10.1007/BF02411056
    [20] Lee O S, Kim S H, Han Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique[J]. Journal of Experimental Mechanics, 2006, 21(1): 51-60.
    [21] 王礼立.应力波基础[M]. 2版.北京: 国防工业出版社, 2005: 30-74.
    [22] 罗鑫, 许金余, 苏灏扬, 等.冲击载荷下高流态地质聚合物混凝土的强度特性[J].建筑材料学报, 2014, 17(1): 72-77. doi: 10.3969/j.issn.1007-9629.2014.01.013

    Luo Xin, Xu Jin-yu, Su Hao-yang, et al. Strength properties of highly fluidized geopolymer concrete under impact loading[J]. Journal of Building Materials, 2014, 17(1): 72-77. doi: 10.3969/j.issn.1007-9629.2014.01.013
    [23] Bishcholf P H, Pery S H. Compressive behavior of concrete at high strain rates[J]. Material and Structure, 1991, 144(24): 425-450.
    [24] 董毓利, 谢和平, 赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构模型[J].水利学报, 1997(7): 72-77. doi: 10.3321/j.issn:0559-9350.1997.07.013

    Dong Yu-li, Xie He-ping, Zhao Peng. Experimental study and constitutive model on concrete under compression with different strain rate[J]. Journal of Hydraulic Engineering, 1997(7): 72-77. doi: 10.3321/j.issn:0559-9350.1997.07.013
    [25] Tedasco J W, Ross C A. Strain-rate-dependent constitutive equation for concrete[J]. Journal of Pressure Vessel Technology, 1998, 120(4): 398-405. doi: 10.1115/1.2842350
    [26] 余寿文, 冯西桥.损伤力学[M].北京: 清华大学出版社, 1997: 319-325.
    [27] 宁建国, 商霖, 孙远翔.混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J].力学进展, 2006, 36(3): 389-405. doi: 10.3321/j.issn:1000-0992.2006.03.006

    Ning Jian-guo, Shang Lin, Sun Yuan-xiang. The research developments of dynamic constitutive relationship for concrete[J]. Advances in Mechanics, 2006, 36(3): 389-405. doi: 10.3321/j.issn:1000-0992.2006.03.006
    [28] Sukontasukkul P, Nimityongskul P, Mindess S. Effect of loading rate on damage of concrete[J]. Cement and Concrete Research, 2004, 34(11): 2127-2134. doi: 10.1016/j.cemconres.2004.03.022
    [29] Shkolnik I E. Effect of nonlinear response of concrete on its elastic modulus and strength[J]. Cement and Concrete Composites, 2005, 27(7/8): 747-757. https://www.sciencedirect.com/science/article/pii/S0958946505000065
    [30] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. ACI Journal, 1984, 81(1): 73-81. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/10649
  • 加载中
图(6)
计量
  • 文章访问数:  3059
  • HTML全文浏览量:  334
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-03
  • 修回日期:  2012-12-12
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回