• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高流态地质聚合物混凝土的高应变率动态压缩变形特性

罗鑫 许金余 苏灏扬 李为民 白二雷

罗鑫, 许金余, 苏灏扬, 李为民, 白二雷. 高流态地质聚合物混凝土的高应变率动态压缩变形特性[J]. 爆炸与冲击, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07
引用本文: 罗鑫, 许金余, 苏灏扬, 李为民, 白二雷. 高流态地质聚合物混凝土的高应变率动态压缩变形特性[J]. 爆炸与冲击, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07
Luo Xin, Xu Jin-yu, Su Hao-yang, Li Wei-min, Bai Er-lei. Deformation behaviors of highly-fluidized geopolymer concrete during dynamic compression at high strain rates[J]. Explosion And Shock Waves, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07
Citation: Luo Xin, Xu Jin-yu, Su Hao-yang, Li Wei-min, Bai Er-lei. Deformation behaviors of highly-fluidized geopolymer concrete during dynamic compression at high strain rates[J]. Explosion And Shock Waves, 2014, 34(2): 216-222. doi: 10.11883/1001-1455(2014)02-0216-07

高流态地质聚合物混凝土的高应变率动态压缩变形特性

doi: 10.11883/1001-1455(2014)02-0216-07
基金项目: 国家自然科学基金项目(51208507, 51378497);陕西省自然科学基金项目(2011gm6014)
详细信息
    作者简介:

    罗鑫(1986—), 男, 博士研究生

  • 中图分类号: O347; TU528.572

Deformation behaviors of highly-fluidized geopolymer concrete during dynamic compression at high strain rates

Funds: Supported by the National Natural Science Foundation of China (51208507, 51378497)
More Information
  • 摘要: 以矿渣、粉煤灰为原材料,以NaOH、Na2CO3为碱激发剂,制备了强度等级为C30的高流态地质聚合物混凝土(highly-fluidized geopolymer concrete,HFGC),运用波形整形技术改进了Ø100mm SHPB实验装置,通过参数控制保证应力均匀和恒应变率加载,对HFGC开展了动态压缩实验,分析了HFGC在冲击压缩荷载下的变形特性。HFGC属于应变率敏感材料和脆性材料,高应变率作用下,HFGC的典型应力应变曲线包括压实挤密阶段、弹性阶段和软化、屈服阶段。在10~100s-1的应变率范围内,HFGC的峰值应变εc随应变率的变化表现出明显的冲击韧化效应,εc随应变率的升高先增大后减小,满足二次函数关系εc=-1.2×10-6+1.6×10-4+0.001 7,变形特性变化的临界应变率为66.7s-1。HFGC的动态弹性模量均低于其在准静态下的弹性模量。
  • 图  1  典型的应变率时程曲线

    Figure  1.  Typical strain rate-time curves

    图  2  典型的破坏形态[22]

    Figure  2.  Typical facture morphology[22]

    图  3  不同应变率下HFGC试样的应力应变曲线

    Figure  3.  Stress-strain curves of HFGC specimens at different strain rates

    图  4  高应变率下HFGC试样典型的应力应变曲线

    Figure  4.  Typical stress-strain curve of HFGC specimens at high strain rate

    图  5  峰值应变随平均应变率的变化

    Figure  5.  Peak strain varied with mean strain rate

    图  6  弹性模量随平均应变率的变化

    Figure  6.  Elastic module varied with mean strain rate

  • [1] Davidovits J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis and Calorimetry, 1989, 35(2): 429-441. doi: 10.1007/BF01904446
    [2] Roy D M. New strong cement materials: Chemically bonded ceramics[J]. Science, 1987, 235(4789): 651-658. doi: 10.1126/science.235.4789.651
    [3] Miranda J M, Fernández-Jiménez A, González J A, et al. Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research, 2005, 35(6): 1210-1217. doi: 10.1016/j.cemconres.2004.07.030
    [4] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 2005, 35(6): 1233-1246. doi: 10.1016/j.cemconres.2004.09.002
    [5] Davidovits J. Geopolymers: Inorganic polymeric new materials[J]. Journal of Thermal Analysis and Calorimetry, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
    [6] Davidovits J. Properties of geopolymer cements[C]//First International Conference on Alkaline Cements and Concretes. 1994: 131-149.
    [7] Palomo A, Maclas A, Blaneo M T, et al. Physical chemical and mechanical characterization of geopolymers[C]//Proceedings of the 9th International Congress on the Chemistry of Cement. 1992: 505-511.
    [8] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报, 1997(6): 3-9.
    [9] 清华大学老科技工作者协会, 北京交通大学土建学院. CECS207: 2006高性能混凝土应用技术规程[S].北京: 中国计划出版社, 2006: 2.
    [10] 许金余, 李为民, 范飞林, 等.地质聚合物混凝土的冲击力学性能研究[J].振动与冲击, 2009, 28(1): 46-51. doi: 10.3969/j.issn.1000-3835.2009.01.011

    Xu Jin-yu, Li Wei-min, Fan Fei-lin, et al. Study on mechanical properties of geopolymeric concrete under impact loading[J]. Journal of Vibration and Shock, 2009, 28(1): 46-51. doi: 10.3969/j.issn.1000-3835.2009.01.011
    [11] 李为民, 许金余.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报, 2008, 36(4): 476-481. doi: 10.3321/j.issn:0454-5648.2008.04.009

    Li Wei-min, Xu Jin-yu. Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(4): 476-481. doi: 10.3321/j.issn:0454-5648.2008.04.009
    [12] Luo Xin, Xu Jin-yu, Bai Er-lei, et al. Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system[J]. Construction and Building Materials, 2012, 29: 482-486. doi: 10.1016/j.conbuildmat.2011.09.021
    [13] Li Wei-min, Xu Jin-yu. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mmdiameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513-514: 145-153. doi: 10.1016/j.msea.2009.02.033
    [14] 蔡瑞环, 欧阳东, 黄华县, 等.搅拌工艺对混凝土强度及氯离子渗透性影响实验研究[J].水运工程, 2008(3): 9-13. doi: 10.3969/j.issn.1002-4972.2008.03.003

    Cai Rui-huan, Ouyang Dong, Huang Hua-xian, et al. Experimental study on influence of chloride ion's permeability and strength of concrete by different mixing technologies[J]. Port and Waterway Engineering, 2008(3): 9-13. doi: 10.3969/j.issn.1002-4972.2008.03.003
    [15] 湖南大学, 天津大学, 同济大学, 等.土木工程材料[M].北京: 中国建筑工业出版社, 2002: 90-101.
    [16] 陶俊林. SHPB实验技术若干问题研究[D].北京: 中国工程物理研究院, 2005: 21-29.
    [17] Lok T S, Li X B, Liu D, et al. Testing and response of large diameter brittle materials subjected to high strain rate[J]. Journal of Materials in Civil Engineering, 2001, 14(3): 262-269.
    [18] 胡泽斌, 许金余, 彭高丰, 等.冲击荷载作用下聚苯乙烯混凝土的吸能特性[J].硅酸盐学报, 2010, 38(7): 1173-1178.

    Hu Ze-bin, Xu Jin-yu, Peng Gao-feng, et al. Energy-absorption property of expanded polystyrene concrete under impact[J]. Journal of the Chinese Ceramic Society, 2011, 38(7): 1173-1178.
    [19] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106. doi: 10.1007/BF02411056
    [20] Lee O S, Kim S H, Han Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique[J]. Journal of Experimental Mechanics, 2006, 21(1): 51-60.
    [21] 王礼立.应力波基础[M]. 2版.北京: 国防工业出版社, 2005: 30-74.
    [22] 罗鑫, 许金余, 苏灏扬, 等.冲击载荷下高流态地质聚合物混凝土的强度特性[J].建筑材料学报, 2014, 17(1): 72-77. doi: 10.3969/j.issn.1007-9629.2014.01.013

    Luo Xin, Xu Jin-yu, Su Hao-yang, et al. Strength properties of highly fluidized geopolymer concrete under impact loading[J]. Journal of Building Materials, 2014, 17(1): 72-77. doi: 10.3969/j.issn.1007-9629.2014.01.013
    [23] Bishcholf P H, Pery S H. Compressive behavior of concrete at high strain rates[J]. Material and Structure, 1991, 144(24): 425-450.
    [24] 董毓利, 谢和平, 赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构模型[J].水利学报, 1997(7): 72-77. doi: 10.3321/j.issn:0559-9350.1997.07.013

    Dong Yu-li, Xie He-ping, Zhao Peng. Experimental study and constitutive model on concrete under compression with different strain rate[J]. Journal of Hydraulic Engineering, 1997(7): 72-77. doi: 10.3321/j.issn:0559-9350.1997.07.013
    [25] Tedasco J W, Ross C A. Strain-rate-dependent constitutive equation for concrete[J]. Journal of Pressure Vessel Technology, 1998, 120(4): 398-405. doi: 10.1115/1.2842350
    [26] 余寿文, 冯西桥.损伤力学[M].北京: 清华大学出版社, 1997: 319-325.
    [27] 宁建国, 商霖, 孙远翔.混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J].力学进展, 2006, 36(3): 389-405. doi: 10.3321/j.issn:1000-0992.2006.03.006

    Ning Jian-guo, Shang Lin, Sun Yuan-xiang. The research developments of dynamic constitutive relationship for concrete[J]. Advances in Mechanics, 2006, 36(3): 389-405. doi: 10.3321/j.issn:1000-0992.2006.03.006
    [28] Sukontasukkul P, Nimityongskul P, Mindess S. Effect of loading rate on damage of concrete[J]. Cement and Concrete Research, 2004, 34(11): 2127-2134. doi: 10.1016/j.cemconres.2004.03.022
    [29] Shkolnik I E. Effect of nonlinear response of concrete on its elastic modulus and strength[J]. Cement and Concrete Composites, 2005, 27(7/8): 747-757. https://www.sciencedirect.com/science/article/pii/S0958946505000065
    [30] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. ACI Journal, 1984, 81(1): 73-81. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/10649
  • 加载中
推荐阅读
剪切增稠液填充蜂窝夹芯板的低速冲击响应
李雨薇 等, 爆炸与冲击, 2025
高速冲击下混凝土动力学性质和动态温度研究
黄晨瑞 等, 爆炸与冲击, 2025
超高速撞击条件下混凝土靶体内 应力波的测量和分析
钱秉文 等, 爆炸与冲击, 2025
考虑动态拉压比影响的岩石损伤本构模型
胡学龙 等, 爆炸与冲击, 2025
聚酰亚胺的动静态压缩力学性能及本构模型
于文峰 等, 高压物理学报, 2022
玻璃纤维增强聚碳酸酯复合材料的动态拉伸力学行为特征及其失效机理
管海陆 等, 高压物理学报, 2023
高速颗粒群冲击多层夹芯复合结构的动态力学响应特性研究进展
郑伟 等, 高压物理学报, 2025
Quaternary ammonium salts: insights into synthesis and new directions in antibacterial applications
Zhou, Zhenyang et al., BIOCONJUGATE CHEMISTRY, 2023
Critical dynamic stress and cumulative plastic deformation of calcareous sand filler based on shakedown theory
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023
Performance and geocell-soil interaction of sand subgrade reinforced with high-density polyethylene, polyester, and polymer-blend geocells: 3d numerical studies
COMPUTERS AND GEOTECHNICS
Powered by
图(6)
计量
  • 文章访问数:  3139
  • HTML全文浏览量:  363
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-03
  • 修回日期:  2012-12-12
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回