-
摘要: 为了实现对大尺寸材料试件的动态加载,得到与轻气炮加载应力波相同的爆炸加载冲击波,基于叠加原理,提出了利用炸药反向起爆模型完成对可压缩固体材料的冲击波加载。通过联立爆炸产物和可压缩流体的速度-压力曲线以及综合考虑炸药和材料试件各自由边所受稀疏波干扰的情况,从理论上给出了冲击波压力和冲击波加载平台宽度的计算方法。并结合数值模拟,对理论分析结果进行了验证,两者基本一致。Abstract: To achieve the dynamic loadings on the large -sized specimens by the explosive shock waves equivalent to the stress wave obtained by a light -gas gun, based on the principle of superposition, the reverse detonation model was introduced to accomplish the shock wave loading on the compressible solid materials.The interferences were comprehensively considered for each free edge of the explosives and the material specimens by the rarefaction waves.By integrating the velocity-pressure curves of the explosion products and the compressible fluids, the calculation methods were theoretically proposed for the shock pressure and the shock wave loading platform width, respectively.And the theoretical analysis results were verified by combining the numerical simulation.They are consistent with each other.
-
Key words:
- mechanics of explosion /
- reverse detonation /
- shock wave /
- large -sized specimens /
- pressure /
- platform width
-
表 1 3种常用炸药和3种代表材料作用后的平台压力和粒子速度
Table 1. Shock wave platform pressure and particle velocity for three explosives loading three materials, respectively
炸药 ρ0/(t·m-3) DJ/(km·s-1) pJ/GPa cJ/(km·s-1) γ 固体 γ* ρ0*/(t·m-3) c0*/(km·s-1) u/(km·s-1) p/GPa TNT 1.630 6.93 19.570 5.198 3 Al 3 2.785 5.328 0.286 4.478 Cu 3 8.930 3.940 0.140 5.121 W 3 18.167 4.030 0.073 5.439 COMP B 1.717 7.98 27.335 5.985 3 Al 3 2.785 5.328 0.377 6.011 Cu 3 8.930 3.940 0.190 6.999 W 3 18.167 4.030 0.100 7.506 PETN1.77 1.770 8.30 30.484 6.225 3 Al 3 2.785 5.328 0.411 6.602 Cu 3 8.930 3.940 0.209 7.738 W 3 18.167 4.030 0.111 8.329 表 2 COMP B炸药反向起爆时,不同尺寸对应的理论平台宽度
Table 2. Theoretical platform width for several sizes in reverse detonation of COMP B
a1/mm a2/mm a3/mm t1/μs t2/μs t3/μs t4/μs te/μs 100 25 100 16.71 8.77 18.77 37.54 8.77 100 36 100 16.71 12.63 18.77 37.54 12.63 100 44 100 16.71 15.44 18.77 37.54 15.44 100 47 100 16.71 16.49 18.77 37.54 16.49 100 50 100 16.71 17.54 18.77 37.54 16.71 100 75 100 16.71 26.32 18.77 37.54 16.71 100 100 100 16.71 35.09 18.77 37.54 16.71 200 200 200 33.42 70.18 37.54 75.08 33.42 300 300 300 50.13 105.26 56.31 112.60 50.13 400 400 400 66.83 140.35 75.08 150.20 66.83 表 3 平台压力和粒子速度的数值模拟结果
Table 3. Numerical simulation results of shock wave platform pressure and particle velocity
材料 理论计算 数值模拟 $\left( \frac{\left| \bar{p}-{{p}^{\prime }} \right|}{{{p}^{\prime }}}\times 100 \right)/%$ $\left( \frac{\left| \bar{u}-{{u}^{\prime }} \right|}{{{u}^{\prime }}}\times 100 \right)/%$ p/GPa u/(km·s-1) p/GPa u/(km·s-1) TNT + Al 4.478 0.286 4.320 0.272 3.66 5.15 TNT+Cu 5.121 0.140 4.967 0.134 3.10 4.48 TNT+W 5.439 0.073 4.555 0.062 19.41 17.74 COMP B+Al 6.011 0.377 5.870 0.362 2.40 4.14 COMP B+Cu 6.999 0.190 6.867 0.183 1.92 3.83 COMP B+W 7.506 0.100 6.828 0.089 9.93 12.36 PETN+Al 6.602 0.411 6.820 0.416 3.20 1.20 PETN+Cu 7.738 0.209 7.990 0.211 3.15 0.95 PETN+W 8.329 0.111 8.119 0.104 2.59 6.73 表 4 冲击波平台宽度的数值模拟结果
Table 4. Numerical simulation results of shock wave platform width
序号 a1/mm a2/mm a3/mm te/μs t′e/μs $\left( \frac{\left| {{t}_{\text{e}}}-t_{\text{e}}^{\prime } \right|}{t_{\text{e}}^{\prime }}\times 100 \right)/%$ 1 100 25 100 8.77 8.12 8.03 2 100 36 100 12.63 12.20 3.54 3 100 44 100 15.44 15.06 2.51 4 100 47 100 16.49 16.12 2.30 5 100 50 100 16.71 16.40 1.88 6 100 75 100 16.71 16.45 1.57 7 100 100 100 16.71 16.56 0.90 8 200 200 200 33.42 33.83 1.22 9 300 300 300 50.13 50.26 0.27 10 400 400 400 66.83 67.05 0.32 -
[1] 宁建国, 王成, 马天宝.爆炸与冲击动力学[M].北京: 国防工业出版社, 2010: 398. [2] 孙承纬, 文尚刚, 赵锋.多级炸药爆轰高速驱动技术的Gurney模型优化分析[J].爆炸与冲击, 2004, 24(4): 299-304. doi: 10.3321/j.issn:1001-1455.2004.04.002Sun Cheng-wei, Wen Shang-gang, Zhao Feng. An optimal analysis of multi-stage explosive accelerated high velocity flyers with the improved Gurney model[J]. Explosion and Shock Waves, 2004, 24(4): 299-304. doi: 10.3321/j.issn:1001-1455.2004.04.002 [3] 赵锋, 文尚刚, 孙承纬, 等.多级串联式超高速飞片装置实验研究[J].爆炸与冲击, 2001, 21(1): 13-16. doi: 10.3321/j.issn:1001-1455.2001.01.003Zhao Feng, Wen Shang-gang, Sun Cheng-wei, et al. Experimental studies on multiple-stage flyers[J]. Explosion and Shock Waves, 2001, 21(1): 13-16. doi: 10.3321/j.issn:1001-1455.2001.01.003 [4] 栾广博, 郝莉, 张柱.平面爆轰波驱动金属飞片运动的数值模拟研究[J].高压物理学报, 2011, 25(5): 451-456. http://www.cqvip.com/QK/96553X/201105/39721763.htmlLuan Guang-bo, Hao Li, Zhang Zhu. Numerical study on the acceleration of metallic flyers driven by planar detonation wave of explosives[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 451-456. http://www.cqvip.com/QK/96553X/201105/39721763.html [5] 张柱, 栾广博, 宁建国.爆炸载荷作用下锥形飞片的平面度研究[J].高压物理学报, 2011, 25(3): 221-226.Zhang Zhu, Luan Guang-bo, Ning Jian-guo. Flatness study on the metallic flyer driven by explosive loading equipment[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 221-226. [6] Gebbeken N, Greulich S, Pietzsch A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact test[J]. International Journal of Impact Engineering, 2006, 32(12): 2017-2031. doi: 10.1016/j.ijimpeng.2005.08.003 [7] 周毓麟.一维非定常流体力学[M].北京: 科学出版社, 1998: 320. [8] 李维新.一维不定常流与冲击波[M].北京: 国防工业出版社, 2003: 408. [9] 经福谦.实验物态方程导引[M]. 2版.北京: 科学出版社, 1999: 212.