反向起爆模型下的冲击波加载

张柱 晋艳娟

张柱, 晋艳娟. 反向起爆模型下的冲击波加载[J]. 爆炸与冲击, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06
引用本文: 张柱, 晋艳娟. 反向起爆模型下的冲击波加载[J]. 爆炸与冲击, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06
Zhang Zhu, Jin Yan -juan. Shock wave loading of reverse detonation model[J]. Explosion And Shock Waves, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06
Citation: Zhang Zhu, Jin Yan -juan. Shock wave loading of reverse detonation model[J]. Explosion And Shock Waves, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06

反向起爆模型下的冲击波加载

doi: 10.11883/1001-1455(2014)02-0223-06
基金项目: 国家自然科学基金项目(11032002, 11172045);太原科技大学博士启动基金项目(20132012)
详细信息
    作者简介:

    张柱(1979—), 男, 博士研究生, 讲师

  • 中图分类号: O389

Shock wave loading of reverse detonation model

Funds: Supported by the National Natural Science Foundation of China (11032002, 11172045)
More Information
  • 摘要: 为了实现对大尺寸材料试件的动态加载,得到与轻气炮加载应力波相同的爆炸加载冲击波,基于叠加原理,提出了利用炸药反向起爆模型完成对可压缩固体材料的冲击波加载。通过联立爆炸产物和可压缩流体的速度-压力曲线以及综合考虑炸药和材料试件各自由边所受稀疏波干扰的情况,从理论上给出了冲击波压力和冲击波加载平台宽度的计算方法。并结合数值模拟,对理论分析结果进行了验证,两者基本一致。
  • 图  1  三角形冲击波叠加成带平台的冲击波

    Figure  1.  Triangular waves superimposed into shock wave with platform

    图  2  平面轴对称反向起爆模型

    Figure  2.  Plane axisymmetric reverse detonation model

    图  3  接触面的压力-时间曲线

    Figure  3.  Pressure -time curve at contact surface

    表  1  3种常用炸药和3种代表材料作用后的平台压力和粒子速度

    Table  1.   Shock wave platform pressure and particle velocity for three explosives loading three materials, respectively

    炸药ρ0/(t·m-3)DJ/(km·s-1)pJ/GPacJ/(km·s-1)γ固体γ*ρ0*/(t·m-3)c0*/(km·s-1)u/(km·s-1)p/GPa
    TNT1.6306.9319.5705.1983Al32.7855.3280.2864.478
    Cu38.9303.9400.1405.121
    W318.1674.0300.0735.439
    COMP B1.7177.9827.3355.9853Al32.7855.3280.3776.011
    Cu38.9303.9400.1906.999
    W318.1674.0300.1007.506
    PETN1.771.7708.3030.4846.2253Al32.7855.3280.4116.602
    Cu38.9303.9400.2097.738
    W318.1674.0300.1118.329
    下载: 导出CSV

    表  2  COMP B炸药反向起爆时,不同尺寸对应的理论平台宽度

    Table  2.   Theoretical platform width for several sizes in reverse detonation of COMP B

    a1/mma2/mma3/mmt1/μst2/μst3/μst4/μste/μs
    1002510016.718.7718.7737.548.77
    1003610016.7112.6318.7737.5412.63
    1004410016.7115.4418.7737.5415.44
    1004710016.7116.4918.7737.5416.49
    1005010016.7117.5418.7737.5416.71
    1007510016.7126.3218.7737.5416.71
    10010010016.7135.0918.7737.5416.71
    20020020033.4270.1837.5475.0833.42
    30030030050.13105.2656.31112.6050.13
    40040040066.83140.3575.08150.2066.83
    下载: 导出CSV

    表  3  平台压力和粒子速度的数值模拟结果

    Table  3.   Numerical simulation results of shock wave platform pressure and particle velocity

    材料理论计算数值模拟$\left( \frac{\left| \bar{p}-{{p}^{\prime }} \right|}{{{p}^{\prime }}}\times 100 \right)/%$$\left( \frac{\left| \bar{u}-{{u}^{\prime }} \right|}{{{u}^{\prime }}}\times 100 \right)/%$
    p/GPau/(km·s-1)p/GPau/(km·s-1)
    TNT + Al4.4780.2864.3200.2723.665.15
    TNT+Cu5.1210.1404.9670.1343.104.48
    TNT+W5.4390.0734.5550.06219.4117.74
    COMP B+Al6.0110.3775.8700.3622.404.14
    COMP B+Cu6.9990.1906.8670.1831.923.83
    COMP B+W7.5060.1006.8280.0899.9312.36
    PETN+Al6.6020.4116.8200.4163.201.20
    PETN+Cu7.7380.2097.9900.2113.150.95
    PETN+W8.3290.1118.1190.1042.596.73
    下载: 导出CSV

    表  4  冲击波平台宽度的数值模拟结果

    Table  4.   Numerical simulation results of shock wave platform width

    序号a1/mma2/mma3/mmte/μste/μs$\left( \frac{\left| {{t}_{\text{e}}}-t_{\text{e}}^{\prime } \right|}{t_{\text{e}}^{\prime }}\times 100 \right)/%$
    1100251008.778.128.03
    21003610012.6312.203.54
    31004410015.4415.062.51
    41004710016.4916.122.30
    51005010016.7116.401.88
    61007510016.7116.451.57
    710010010016.7116.560.90
    820020020033.4233.831.22
    930030030050.1350.260.27
    1040040040066.8367.050.32
    下载: 导出CSV
  • [1] 宁建国, 王成, 马天宝.爆炸与冲击动力学[M].北京: 国防工业出版社, 2010: 398.
    [2] 孙承纬, 文尚刚, 赵锋.多级炸药爆轰高速驱动技术的Gurney模型优化分析[J].爆炸与冲击, 2004, 24(4): 299-304. doi: 10.3321/j.issn:1001-1455.2004.04.002

    Sun Cheng-wei, Wen Shang-gang, Zhao Feng. An optimal analysis of multi-stage explosive accelerated high velocity flyers with the improved Gurney model[J]. Explosion and Shock Waves, 2004, 24(4): 299-304. doi: 10.3321/j.issn:1001-1455.2004.04.002
    [3] 赵锋, 文尚刚, 孙承纬, 等.多级串联式超高速飞片装置实验研究[J].爆炸与冲击, 2001, 21(1): 13-16. doi: 10.3321/j.issn:1001-1455.2001.01.003

    Zhao Feng, Wen Shang-gang, Sun Cheng-wei, et al. Experimental studies on multiple-stage flyers[J]. Explosion and Shock Waves, 2001, 21(1): 13-16. doi: 10.3321/j.issn:1001-1455.2001.01.003
    [4] 栾广博, 郝莉, 张柱.平面爆轰波驱动金属飞片运动的数值模拟研究[J].高压物理学报, 2011, 25(5): 451-456. http://www.cqvip.com/QK/96553X/201105/39721763.html

    Luan Guang-bo, Hao Li, Zhang Zhu. Numerical study on the acceleration of metallic flyers driven by planar detonation wave of explosives[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 451-456. http://www.cqvip.com/QK/96553X/201105/39721763.html
    [5] 张柱, 栾广博, 宁建国.爆炸载荷作用下锥形飞片的平面度研究[J].高压物理学报, 2011, 25(3): 221-226.

    Zhang Zhu, Luan Guang-bo, Ning Jian-guo. Flatness study on the metallic flyer driven by explosive loading equipment[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 221-226.
    [6] Gebbeken N, Greulich S, Pietzsch A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact test[J]. International Journal of Impact Engineering, 2006, 32(12): 2017-2031. doi: 10.1016/j.ijimpeng.2005.08.003
    [7] 周毓麟.一维非定常流体力学[M].北京: 科学出版社, 1998: 320.
    [8] 李维新.一维不定常流与冲击波[M].北京: 国防工业出版社, 2003: 408.
    [9] 经福谦.实验物态方程导引[M]. 2版.北京: 科学出版社, 1999: 212.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  3391
  • HTML全文浏览量:  342
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-24
  • 修回日期:  2012-12-01
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回