-
摘要: 针对球形粒子组成的散体系统,基于离散单元法,将球形粒子离散成弹簧-球单元系统,给出了离散单元的运动方程,建立了离散单元之间的弹性力和接触力的计算模型,并用Mohr -Coulomb型破坏准则判断粒子的破碎。运用上述方法,对圆筒内由脆性材料组成的散体系统在冲击载荷下的挤压破碎过程进行了数值模拟;计算过程中,跟踪散体系统中每个粒子在不同时刻的破碎情况;分析了散体系统冲击破碎过程数值模拟结果的主要影响因素。结果显示:数值模拟过程中需综合考虑计算精度和计算时间之间的平衡;相同的计算条件下,颗粒的初始堆积方式不同,计算得到的散体系统的破碎程度不同。Abstract: Aimed to a granular system composed of spherical particles, the particles were divided into a spring -spherical elements system based on the discrete element method.The calculation models were given for the elastic and contact forces between discrete elements.And the Mohr -Coulomb failure rule was used to estimate the fragmentation of the discrete elements.The above methods were applied to numerically simulate the impact fragmentation process of the granular system composed of brittle material in a cylinder.In the numerical simulations, the fragmentation states of each particle in the granular system at different times were followed.And the main influencing factors were analyzed on the simulated results.The investigations display that in the numerical simulation, it is necessary to consider the balance between computational accuracy and time.And under the same computational conditions, the calculated fragmentation degrees of granular systems will vary with the packing ways of the particles.
-
Key words:
- solid mechanics /
- fragmentation /
- discrete element method /
- granules
-
[1] 吴爱祥, 孙业志, 刘湘平.散体动力学理论及其应用[M].北京: 冶金工业出版社, 2002. [2] 芮筱亭, 贠来峰, 王国平, 等.弹药发射安全性导论[M].北京: 国防工业出版社, 2009. [3] 江见鲸, 陆新征, 叶列平.混凝土结构有限元分析[M].北京: 清华大学出版社, 2005: 56-64. [4] Cundall P A. A computer model for simulating progressive large scale movement in block rock system[C]//Symposium ISRM. 1971: 129-136. [5] Addeta G A, Kun F, Ramm E. On the application of a discrete mode to the fracture process of cohesive granular materials[J]. Granular Matter, 2002, 4(2): 77-90. doi: 10.1007/s10035-002-0103-9 [6] Carmona H A, Wittel F K, Kun F, et al. Fragmentation process in impact of spheres[J]. Physical Review E, 2008, 77(5): 051302. doi: 10.1103/PhysRevE.77.051302 [7] Shan Li, Cheng Ming, Liu Kai-xin, et al. New discrete element models for three-dimensional impact problems[J]. Chinese Physics Letters, 2009, 26(12): 120202. doi: 10.1088/0256-307X/26/12/120202/pdf [8] 刘凯欣, 高凌天.离散元法在求解三维冲击动力学问题中的应用[J].固体力学学报, 2004, 25(2): 181-185. doi: 10.3969/j.issn.0254-7805.2004.02.011Liu Kai-xin, Gao Ling-tian. The application of discrete element method in solving three-dimensional impact dynamics problems[J]. Acta Mechanica Solida Sinica, 2004, 25(2): 181-185. doi: 10.3969/j.issn.0254-7805.2004.02.011 [9] Mishra B K, Murty C V R. On the determination of contact parameters for realistic DEM simulation of ball mills[J]. Powder Technology, 2001, 115: 290-297. doi: 10.1016/S0032-5910(00)00347-8 [10] Kruggel-Emden H, Wirtz S, Scherer V. Applicable contact model for the discrete element method: The single particle perspective[C]//Pressure Vessels and Piping Conference(PVP2008). Chicago, 2008. [11] 目黑公郎, 博野元彦.用粒状体模拟混凝土结构的破坏分析[J].东京大学地质研究所汇报, 1991, 63(4): 409-468.Mekuro K, Hakano T. Fracture analysis of concrete structures by granule simulation[J]. Research Report of Geology Institute of Tokyo University, 1991, 63(4): 409-468. 期刊类型引用(6)
1. 余浩,刘红梅,田俊杰,张健,艾闻博,姚庆. 基于EDEM的输送带动态跑偏仿真分析. 机械与电子. 2022(08): 8-13 . 百度学术
2. 颜子涵,陈群云,李卓,付融冰,李彦伟,吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化. 化工进展. 2022(S1): 72-80 . 百度学术
3. 朱亮,刘秋华,王旭东. 约束电爆过程中石墨的纳米化机制. 兰州理工大学学报. 2020(03): 18-22 . 百度学术
4. 姜世平,黎超. 火炮发射药床冲击破碎动力学仿真研究. 弹道学报. 2019(03): 41-45 . 百度学术
5. 洪俊,张镇,刘俊,王立源. 梯形载荷下伴随破碎的散粒体系统动力学分析. 东南大学学报(自然科学版). 2015(04): 787-791 . 百度学术
6. 罗小燕,蔡改贫,余世科. 基于分级试验的立式预磨机粒级分布预测模型. 机械设计与研究. 2014(06): 118-120+126 . 百度学术
其他类型引用(2)
-