High speed compression behaviour of metallic cellular materials under impact loading
-
摘要: 基于微CT扫描影像信息,建立泡沫金属材料二维细观有限元模型,考虑不规则胞孔的不均匀分布,根据实验结果拟合孔壁材料的弹塑性本构参数。研究了泡沫金属在不同加载速度下的压缩变形机理,重点讨论泡沫金属中弹塑性波的传播、惯性效应和从冲击端传递到静止端的应力变化特征。对于相对密度为0.3的泡沫铝,弹性波速约为5 km/s,与孔壁材料的弹性波速相当,塑性波速表现为随着加载速度的增大而增大。在加载速度为50~100 m/s间变形模式从准静态模式转变为动态模式,未发现明显的临界速度,动态锁死应变随着加载速度的增大而增大。由于塑性波发生反射,试件会发生二次压缩过程,相应地,静止端产生二次应力平台。受惯性作用的影响,二次应力平台也随着加载速度的增大而提高。Abstract: A two-dimensional finite element model was created from a tomographic image of the aluminum foams, which represents the cell shape and geometric distribution of real foams.To determine the mechanical properties of cell wall material, the uniaxial stress versus strain curve, predicted numerically for aluminum foam, was fitted to that measured experimentally.We mainly discuss the shock wave propagation, the inertial effect and the strength of the stress on the stationary end of metallic cellular materials under high speed compression.As for aluminum foams with relative density 0.3, the elastic wave speed is calculated to be 5 km/s, whilst the plastic wave speed increases from 83 to 294 m/s, with the compression velocity increasing from 50 to 200 m/s.Within the compression velocity range of 50-100 m/s, the deformation modes change from random mode to progressive mode.However, no distinct critical velocity are observed.The dynamic locking strain increases with the increasing compression velocity.Second compression process occurs in metallic cellular materials when the plastic wave reflects on the stationary end.Accordingly, the second stress plateau appears on the stationary end, which increases with the increasing compression velocity due to inertia effect.
-
表 1 泡沫金属高速冲击加载计算结果
Table 1. Summary of FE predictions for aluminum foam (relative density of 0.3) under impact loading
vi/(m·s-1) vp/(m·s-1) εlock ρlock/(kg·m-3) σy(εlock)/MPa 50 83 0.60 2 025 34.5 100 167 0.60 2 025 34.5 150 234 0.64 2 314 40.1 200 294 0.68 2 700 52.7 -
[1] Lopatnikov S L, Gama B A, Haque M J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures, 2003, 61(1/2): 61-71. [2] Tan P, Harrigan J, Reid S. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology, 2002, 8: 480-488. [3] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams. Part I-Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007 [4] Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading: PartⅠ-Experiments[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652-2671. doi: 10.1016/j.jmps.2007.04.005 [5] Merrett R P, Langdon G S, Theobald M D. The blast and impact loading of aluminium foam[J]. Materials & Design, 2013, 44: 311-319. [6] Pattofatto S, Elnasri I, Zhao H, et al. Shock enhancement of cellular structures under impact loading: PartⅡ-Analysis[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2672-2686. doi: 10.1016/j.jmps.2007.04.004 [7] Karagiozova D, Langdon G S, Nurick G N. Propagation of compaction waves in metal foams exhibiting strain hardening[J]. International Journal of Solids and Structures, 2012, 49(19/20): 2763-2777. [8] Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46: 3988-3998. doi: 10.1016/j.ijsolstr.2009.07.024 [9] Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36: 775-782. [10] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570. [11] Lopatnikov S L, Gama B A, Gillespie J W. Modeling the progressive collapse behavior of metal foams[J]. International Journal of Impact Engineering, 2007, 34(3): 587-595. doi: 10.1016/j.ijimpeng.2005.12.004 [12] Lopatnikov S L, Gama B A, Haque M J, et al. High-velocity plate impact of metal foams[J]. International Journal of Impact Engineering, 2004, 30(4): 421-445. doi: 10.1016/S0734-743X(03)00066-6 [13] Harrigan J J, Reid S R, Tan P J, et al. High rate crushing of wood along the grain[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 521-544. [14] 张健, 赵桂平, 卢天健.闭孔泡沫铝应变率效应的试验和有限元分析[J].西安交通大学学报, 2010, 44(5): 97-101.Zhang Jian, Zhao Gui-ping, Lu Tian-jian. Experimental and numerical study on strain rate effects of close-celled aluminum foams[J]. Journal of Xi'an Jiaotong University, 2010, 44(5): 97-101. [15] Hallquist J O. LSTC LS-DYNA user's manual[Z]. Livermore, CA, US: Livermore Software Technology Corporation, 2007. [16] Wang Li-li. Foundation of stress waves[M]. Beijing: National Defense Industry Press, 2005. 期刊类型引用(14)
1. 张保勇,崔嘉瑞,陶金,王亚军,秦艺峰,魏春荣,张迎新. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究. 爆炸与冲击. 2023(02): 170-180 . 本站查看
2. 陈松,习会峰,黄世清,王博伟,王小刚. 软基体混合胞孔材料的力学性能及抗多次冲击性能. 爆炸与冲击. 2022(06): 62-70 . 本站查看
3. 张晓阳,谭仕锋,刘泽宇,赵飘. 中高应变率下泡沫金属动态拉伸有限元模型研究. 南华大学学报(自然科学版). 2022(06): 45-50 . 百度学术
4. 郭亚周,杨海,刘小川,郑志军,王计真. 闭孔泡沫铝在动态加载下的压缩力学行为研究. 振动工程学报. 2020(02): 338-346 . 百度学术
5. 胡和平,谢帅,张晓阳,刘希文. 尺寸不规则度梯度分布参数对泡沫金属单轴拉伸力学性能的影响研究. 南华大学学报(自然科学版). 2020(03): 1-8 . 百度学术
6. 郭亚周,刘小川,白春玉,郑志军,王计真. 闭孔泡沫金属几种不同建模方法的对比性研究. 航空材料学报. 2020(04): 85-91 . 百度学术
7. 李雪艳,李志斌,张舵. 不同温度和应变率下的闭孔泡沫铝压缩力学性能. 振动与冲击. 2020(23): 17-20+29 . 百度学术
8. 魏春荣,石茜,刘宝磊,孙建华,曲征. 多层泡沫金属阻抑瓦斯爆炸超压的实验研究. 黑龙江科技大学学报. 2019(05): 560-568 . 百度学术
9. 樊建领,马连生,苏厚德. 泡沫材料圆板的非线性弯曲行为分析. 甘肃科学学报. 2018(05): 80-84 . 百度学术
10. 李志斌,卢芳云. 梯度温度场中多胞材料牺牲层的抗冲击分析. 兵工学报. 2017(12): 2463-2471 . 百度学术
11. 顾文彬,徐景林,刘建青,陈江海,胡亚峰. 多层泡沫铝夹芯板的抗爆性能. 含能材料. 2017(03): 240-247 . 百度学术
12. 吕振华,孙靖譞. 轴向变密度铝泡沫件的动态和静态压缩实验与有限元模拟分析. 清华大学学报(自然科学版). 2017(07): 753-762 . 百度学术
13. 黄志超,刘志芳,路国运. 侧向冲击载荷下金属薄壁圆管内填充泡沫铝的吸能特性研究. 太原理工大学学报. 2017(02): 243-249+264 . 百度学术
14. 张健,赵桂平,卢天健. 梯度泡沫金属的冲击吸能特性. 工程力学. 2016(08): 211-220 . 百度学术
其他类型引用(8)
-