泡沫金属在冲击载荷下的动态压缩行为

张健 赵桂平 卢天健

张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为[J]. 爆炸与冲击, 2014, 34(3): 278-284. doi: 10.11883/1001-1455(2014)03-0278-07
引用本文: 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为[J]. 爆炸与冲击, 2014, 34(3): 278-284. doi: 10.11883/1001-1455(2014)03-0278-07
Zhang Jian, Zhao Gui-ping, Lu Tian-jian. High speed compression behaviour of metallic cellular materials under impact loading[J]. Explosion And Shock Waves, 2014, 34(3): 278-284. doi: 10.11883/1001-1455(2014)03-0278-07
Citation: Zhang Jian, Zhao Gui-ping, Lu Tian-jian. High speed compression behaviour of metallic cellular materials under impact loading[J]. Explosion And Shock Waves, 2014, 34(3): 278-284. doi: 10.11883/1001-1455(2014)03-0278-07

泡沫金属在冲击载荷下的动态压缩行为

doi: 10.11883/1001-1455(2014)03-0278-07
基金项目: 国家自然科学基金项目(11021202);国家重点基础研究发展计划(973计划)项目(2011CB610305);陕西省自然科学基金项目(2011JM1012)
详细信息
    作者简介:

    张健(1981—), 男, 博士

  • 中图分类号: O347.3

High speed compression behaviour of metallic cellular materials under impact loading

Funds: Supported by the National Natural Science Foundation of China (11021202);the National Basic Research Program of China (973 Program) (2011CB610305)
More Information
  • 摘要: 基于微CT扫描影像信息,建立泡沫金属材料二维细观有限元模型,考虑不规则胞孔的不均匀分布,根据实验结果拟合孔壁材料的弹塑性本构参数。研究了泡沫金属在不同加载速度下的压缩变形机理,重点讨论泡沫金属中弹塑性波的传播、惯性效应和从冲击端传递到静止端的应力变化特征。对于相对密度为0.3的泡沫铝,弹性波速约为5 km/s,与孔壁材料的弹性波速相当,塑性波速表现为随着加载速度的增大而增大。在加载速度为50~100 m/s间变形模式从准静态模式转变为动态模式,未发现明显的临界速度,动态锁死应变随着加载速度的增大而增大。由于塑性波发生反射,试件会发生二次压缩过程,相应地,静止端产生二次应力平台。受惯性作用的影响,二次应力平台也随着加载速度的增大而提高。
  • 图  1  泡沫金属材料二维细观有限元模型

    Figure  1.  Two-dimensional mesoscale finite element models of metallic cellular materials

    图  2  泡沫金属单轴压缩的名义应力应变曲线

    Figure  2.  Numerically predicted and experimentally measured uniaxial compressive stress versus strain curves for closed-cell aluminum foams

    图  3  泡沫金属在不同速度压缩下的变形图

    Figure  3.  Simulated deformation modes of aluminum foam (relative density of 0.3)under different impact velocities

    图  4  泡沫金属动态压缩的名义应力应变曲线

    Figure  4.  Numerically predicted uniaxial compressive stress versus strain curves for aluminum foams

    图  5  冲击波传播示意图

    Figure  5.  Schematic diagram of shock wave propagation in metallic cellular materials

    表  1  泡沫金属高速冲击加载计算结果

    Table  1.   Summary of FE predictions for aluminum foam (relative density of 0.3) under impact loading

    vi/(m·s-1) vp/(m·s-1) εlock ρlock/(kg·m-3) σy(εlock)/MPa
    50 83 0.60 2 025 34.5
    100 167 0.60 2 025 34.5
    150 234 0.64 2 314 40.1
    200 294 0.68 2 700 52.7
    下载: 导出CSV
  • [1] Lopatnikov S L, Gama B A, Haque M J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment[J]. Composite Structures, 2003, 61(1/2): 61-71.
    [2] Tan P, Harrigan J, Reid S. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology, 2002, 8: 480-488.
    [3] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams. Part I-Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007
    [4] Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading: PartⅠ-Experiments[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652-2671. doi: 10.1016/j.jmps.2007.04.005
    [5] Merrett R P, Langdon G S, Theobald M D. The blast and impact loading of aluminium foam[J]. Materials & Design, 2013, 44: 311-319.
    [6] Pattofatto S, Elnasri I, Zhao H, et al. Shock enhancement of cellular structures under impact loading: PartⅡ-Analysis[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2672-2686. doi: 10.1016/j.jmps.2007.04.004
    [7] Karagiozova D, Langdon G S, Nurick G N. Propagation of compaction waves in metal foams exhibiting strain hardening[J]. International Journal of Solids and Structures, 2012, 49(19/20): 2763-2777.
    [8] Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46: 3988-3998. doi: 10.1016/j.ijsolstr.2009.07.024
    [9] Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36: 775-782.
    [10] Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570.
    [11] Lopatnikov S L, Gama B A, Gillespie J W. Modeling the progressive collapse behavior of metal foams[J]. International Journal of Impact Engineering, 2007, 34(3): 587-595. doi: 10.1016/j.ijimpeng.2005.12.004
    [12] Lopatnikov S L, Gama B A, Haque M J, et al. High-velocity plate impact of metal foams[J]. International Journal of Impact Engineering, 2004, 30(4): 421-445. doi: 10.1016/S0734-743X(03)00066-6
    [13] Harrigan J J, Reid S R, Tan P J, et al. High rate crushing of wood along the grain[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 521-544.
    [14] 张健, 赵桂平, 卢天健.闭孔泡沫铝应变率效应的试验和有限元分析[J].西安交通大学学报, 2010, 44(5): 97-101.

    Zhang Jian, Zhao Gui-ping, Lu Tian-jian. Experimental and numerical study on strain rate effects of close-celled aluminum foams[J]. Journal of Xi'an Jiaotong University, 2010, 44(5): 97-101.
    [15] Hallquist J O. LSTC LS-DYNA user's manual[Z]. Livermore, CA, US: Livermore Software Technology Corporation, 2007.
    [16] Wang Li-li. Foundation of stress waves[M]. Beijing: National Defense Industry Press, 2005.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2920
  • HTML全文浏览量:  333
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-13
  • 修回日期:  2013-04-25
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回