一种基于颗粒接触的二维无网格方法及其在高速冲击模拟中的应用

冯春 李世海 刘晓宇

冯春, 李世海, 刘晓宇. 一种基于颗粒接触的二维无网格方法及其在高速冲击模拟中的应用[J]. 爆炸与冲击, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08
引用本文: 冯春, 李世海, 刘晓宇. 一种基于颗粒接触的二维无网格方法及其在高速冲击模拟中的应用[J]. 爆炸与冲击, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08
Feng Chun, Li Shi-hai, Liu Xiao-yu. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation[J]. Explosion And Shock Waves, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08
Citation: Feng Chun, Li Shi-hai, Liu Xiao-yu. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation[J]. Explosion And Shock Waves, 2014, 34(3): 292-299. doi: 10.11883/1001-1455(2014)03-0292-08

一种基于颗粒接触的二维无网格方法及其在高速冲击模拟中的应用

doi: 10.11883/1001-1455(2014)03-0292-08
基金项目: 国家自然科学基金青年科学基金项目(11302230);国家科技支撑计划项目(2012BAK10B00);国家重点基础研究发展计划(973计划)项目(2010CB731506)
详细信息
    作者简介:

    冯春(1982—), 男, 硕士, 助理研究员

    通讯作者:

    Feng Chun, fengchun@imech.ac.cn

  • 中图分类号: O383;O241

A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation

Funds: Supported by the National Natural Science Foundation of China (11302230); the National Basic Research Program of China (973 Program) (2010CB731506)
  • 摘要: 为解决基于连续介质力学的离散元方法(CDEM)在高速冲击模拟中因网格畸变导致的系统能量发散问题,提出了一种基于颗粒接触的二维无网格方法(PCMM)。该方法基于颗粒间复杂丰富的接触信息构建三角形单元,通过接触对的演化更新实现旧单元(满足删除条件的单元)的删除及新单元(满足创建条件的单元)的重建,通过在单元内引入流体弹塑性模型实现高速冲击问题的模拟。给出了三角形单元创建的3个必备条件:组成单元的3个颗粒必须彼此接触,任意一个内角必须在30°~150°之间,任意一条边长必须大于平均半径的0.5倍。弹性杆撞击、泰勒杆、碎片云、子弹入射靶板等算例的结果表明了PCMM方法在模拟高速冲击问题方面的正确性及合理性。
  • 图  1  PCMM方法的基本流程

    Figure  1.  Basic steps of PCMM

    图  2  用于邻居搜索的二维空间盒

    Figure  2.  2D bin array for neighbour searching

    图  3  基于方位角的邻居排序

    Figure  3.  Neighbour sequence according to position angle

    图  4  弹性杆撞击数值模型

    Figure  4.  Numerical model of elastic bar impacting rigid wall

    图  5  杆件中部测点轴向速度曲线

    Figure  5.  Axial velocity curve on the middle point of bar

    图  6  不同时刻杆件的变形

    Figure  6.  Deformation of Taylor bar at different times

    图  7  最终状态下杆件各位置的半径

    Figure  7.  Bar radius at different position in final state

    图  8  2.68 μs时碎片云的形态

    Figure  8.  Shape of debris clouds at 2.68 μs

    图  9  不同时刻子弹、靶板系统的水平速度云图

    Figure  9.  Horizontal velocity contour of bullet target system at different times

  • [1] Li S H, Zhao M H, Wang Y N, et al. A continuum-based discrete element method for continuous deformation and failure process[C]//WCCM VI in Conjunction with APCOM'04. Beijing, 2004: 77.
    [2] Wang Y N, Zhao M H, Li S H, et al. Stochastic structural model of rock and soil aggregates by continumm-based discrete element method[J]. Science in China Series E-Engineering & Materials Science, 2005, 48(suppl): 95-106. http://www.cqvip.com/QK/60110X/2005z1/1001150600.html
    [3] Littlefield D L. The use of r-adaptivity with local, intermittent remesh for modeling hypervelocity impact and penetration[J]. International Journal of Impact Engineering, 2001, 26(1): 433-442. http://www.sciencedirect.com/science/article/pii/S0734743X01000938
    [4] Oñate E, Idelsohn S R, Del Pin F, et al. The particle finite element method-an overview[J]. International Journal of Computational Methods, 2004, 1(2): 267-307. doi: 10.1142/S0219876204000204
    [5] 张雄, 刘岩, 马上.无网格法的理论及应用[J].力学进展, 2009, 39(1): 1-36. doi: 10.3321/j.issn:1000-0992.2009.01.001

    Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications[J]. Advances in Mechanics, 2009, 39(1): 1-36. doi: 10.3321/j.issn:1000-0992.2009.01.001
    [6] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
    [7] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics-theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389. doi: 10.1093/mnras/181.3.375
    [8] Antuono M, Colagrossi A, Marrone S, et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms[J]. Computer Physics Communications, 2010, 181(3): 532-549. doi: 10.1016/j.cpc.2009.11.002
    [9] 肖毅华, 胡德安, 韩旭, 等.一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用[J].爆炸与冲击, 2012, 32(4): 384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007

    Xiao Yi-hua, Hu De-an, Han Xu, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation[J]. Explosion and Shock Waves, 2012, 32(4): 384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
    [10] Ma G W, Wang X J, Ren F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 353-363. doi: 10.1016/j.ijrmms.2011.02.001
    [11] Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conduction[J]. International Journal for Numerical Methods in Engineering, 1999, 46(2): 231-252. doi: 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K
    [12] Sigalotti L D G, López H. Adaptive kernel estimation and SPH tensile instability[J]. Computers & Mathematics with Applications, 2008, 55(1): 23-50. http://www.sciencedirect.com/science/article/pii/S0898122107003288
    [13] Ma S, Zhang X, Qiu X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems[J]. International Journal of Impact Engineering, 2009, 36(2): 272-282. doi: 10.1016/j.ijimpeng.2008.07.001
    [14] Zhang X, Sze K Y, Ma S. An explicit material point finite element method for hyper-velocity impact[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 689-706. doi: 10.1002/nme.1579
    [15] Ambati R, Pan X F, Yuan H, et al. Application of material point methods for cutting process simulations[J]. Computational Materials Science, 2012, 57: 102-110. doi: 10.1016/j.commatsci.2011.06.018
    [16] 吕剑, 何颖波, 田常津, 等.泰勒杆实验对材料动态本构参数的确认和优化确定[J].爆炸与冲击, 2006, 26(4): 339-344. doi: 10.3321/j.issn:1001-1455.2006.04.009

    Lü Jian, He Ying-bo, Tian Chang-jing, et al. Validation and optimization of dynamic constitutive model constants with Taylor test[J]. Explosion and Shock Waves, 2006, 26(4): 339-344. doi: 10.3321/j.issn:1001-1455.2006.04.009
    [17] Beissel S R, Gerlach C A, Johnson G R. A quantitative analysis of computed hypervelocity debris clouds[J]. International Journal of Impact Engineering, 2008, 35(12): 1410-1418. doi: 10.1016/j.ijimpeng.2008.07.059
    [18] Huang J, Ma Z, Ren L S, et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Journal of Impact Engineering, 2013, 56: 32-39. doi: 10.1016/j.ijimpeng.2012.07.003
    [19] Chi R Q, Pang B J, Guan G S, et al. Analysis of debris clouds produced by impact of aluminum spheres with aluminum sheets[J]. International Journal of Impact Engineering, 2008, 35(12): 1465-1472. doi: 10.1016/j.ijimpeng.2008.07.009
  • 加载中
图(9)
计量
  • 文章访问数:  2814
  • HTML全文浏览量:  264
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-25
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回