惰性介质对钝感炸药爆轰的约束效应

于明 张文宏 于恒

于明, 张文宏, 于恒. 惰性介质对钝感炸药爆轰的约束效应[J]. 爆炸与冲击, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07
引用本文: 于明, 张文宏, 于恒. 惰性介质对钝感炸药爆轰的约束效应[J]. 爆炸与冲击, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07
Yu Ming, Zhang Wen-hong, Yu Heng. Confinement effect of inert materials on insensitive high explosives[J]. Explosion And Shock Waves, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07
Citation: Yu Ming, Zhang Wen-hong, Yu Heng. Confinement effect of inert materials on insensitive high explosives[J]. Explosion And Shock Waves, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07

惰性介质对钝感炸药爆轰的约束效应

doi: 10.11883/1001-1455(2014)03-0300-07
基金项目: 国家自然科学基金项目(11272064);中国工程物理研究院科学技术发展基金项目(2011B0201040)
详细信息
    作者简介:

    于明(1971—), 男, 博士, 研究员

    通讯作者:

    Yu Ming, yuming99991@sina.com

  • 中图分类号: O381

Confinement effect of inert materials on insensitive high explosives

Funds: Supported by the National Natural Science Foundation of China (11272064)
  • 摘要: 首先用改进冲击波极曲线理论分析惰性介质对钝感炸药爆轰的约束作用类型。改进冲击波极曲线基于爆轰ZND模型建立在前导冲击波上,并且未反应炸药采用JWL状态方程,惰性介质采用p(ρ,T)形式状态方程。理论考察声速小于炸药CJ爆速且压缩性不同的6种典型惰性介质约束情况。然后用带三项式Lee-Tarver化学反应率的二维Lagrange流体力学方法数值模拟考察约束相互作用。数值考察约束介质的影响因素有:压缩性、厚度、典型双层介质组合约束。从数值结果看出,由介质压缩性的不同给出的约束作用方式共7种:其中6种出现在介质声速小于炸药CJ爆速条件下,可运用冲击波极曲线理论;另外一种出现在介质声速大于炸药CJ爆速条件下,不能使用冲击波极曲线理论。同时,介质厚度、双层介质组合方式也能够影响爆轰前导冲击波阵面形状以及爆轰化学反应流动状态。
  • 图  1  具有定常流动结构的约束作用极曲线图

    Figure  1.  The polar curves of the confinement interactions with steady flow structures

    图  2  计算域图

    Figure  2.  The calculating model

    图  3  具有定常流动结构的约束作用的流场图

    Figure  3.  The flow fields of the confinement interactions with steady flow structures

    图  4  具有非定常流动结构的约束作用爆轰流场图

    Figure  4.  The flow field of the confinement interaction with unsteady flow structure

    图  5  铍介质内的应力波结构图

    Figure  5.  The stress waves in Be

    图  6  钢厚度对爆轰流场的影响

    Figure  6.  Effect of the thickness of steel on detonation flow field

    图  7  钢厚度对爆轰波法向速度的影响

    Figure  7.  Effect of the thickness of steel on normal speed of detonation

    图  8  钢-铍的约束影响

    Figure  8.  The confinement state of Fe-Be

    图  9  钢-铍组合约束对炸药流场的影响

    Figure  9.  The flow field of interactions in confinement by Fe-Be

  • [1] Aslam T D, Bdzil J B. Numerical and theoretical investigation on detonation-inert confinement interactions[C]//The 12th Symposium(International)on Detonation. San Diego, California, 2002: 483-488.
    [2] Aslam T D, Bdzil J B. Analysis of the LANL detonation-confinement test[C]//Proceedings of the Conference on Shock Compression of Condensed Matter. Portland, OR, 2003: 831-834.
    [3] Aslam T D, Bdzil J B. Numerical and theoretical investigation on detonation confinement sandwich tests[C]//The 13th Symposium(International)on Detonation. Norfolk, VA, 2006: 6-10.
    [4] Hill L G, Aslam T D. The LANL detonation-confinement test: Prototype development and sample results[C]//Proceedings of the Conference on Shock Compression of Condensed Matter. Portland, OR, 2003: 847-850.
    [5] Tarver C M, McGuire E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials[C]//The 12th Symposium(International)on Detonation. San Diego, California, 2002: 641-649.
    [6] Garcia M L, Tarver C M. Three-dimensional ignition and growth reactive flow modeling of prism failure tests on PBX9502[R]. UCRL-CONF-222376, 2006.
    [7] Banks J W, Schwendeman D W, Kapila A K, et al. A study of detonation propagation and diffraction with compliant confinement[R]. UCRL-JRNL-233735, 2007.
    [8] Stewart D S, Yoo S, Wescott B L. High-order numerical simulation and modelling of the interaction of energetic and inert materials[J]. Combustion Theory and Modelling, 2007, 11(2): 305-332. doi: 10.1080/13647830600876629a
    [9] Eden G, Belcher R A. The effects of inert walls on the velocity of detonation in EDC35[C]//The 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 831-841.
    [10] Aveille J, Carion N. Experimental and numerical study of oblique interactions of detonation waves with explosives/solid material[C]//The 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 842-851.
    [11] Balaganskii I A, Agureikin V A. Effect of an inert high-modulus ceramic wall on detonation propagation in solid explosive charges[J]. Combustion, Explosive and Shock Waves, 1994, 30(5): 674-681. doi: 10.1007/BF00755836
    [12] 刘尔岩, 王元书, 刘邦弟.爆轰波与金属的斜相互作用[J].爆炸与冲击, 2002, 22(3): 203-209. doi: 10.3321/j.issn:1001-1455.2002.03.003

    Liu Er-yan, Wang Yuan-shu, Liu Bang-di. Interaction between detonation and metals[J]. Explosion and Shock Waves, 2002, 22(3): 203-209. doi: 10.3321/j.issn:1001-1455.2002.03.003
    [13] 孙承纬, 卫玉章, 周之奎.应用爆轰物理[M].北京: 国防工业出版社, 2000.
    [14] 经福谦.实验物态方程导引[M]. 2版.北京: 科学出版社, 1999.
    [15] Bdzil J B. Steady-state two-dimensional detonation[J]. Journal of Fluid Mechanics, 1981, 108(2): 195-206. http://adsabs.harvard.edu/abs/1981JFM...108..195B
    [16] 李德元, 徐国荣, 水鸿寿, 等.二维非定常流体力学数值方法[M].北京: 科学出版社, 1987.
  • 加载中
图(9)
计量
  • 文章访问数:  3212
  • HTML全文浏览量:  441
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2013-02-22
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回