Initiation and extension of gas-driven fracture during compound perforation
-
摘要: 结合线弹性断裂力学的裂缝尖端应力强度因子判据,建立了复合射孔爆燃气体压裂裂缝的起裂扩展模型,通过建立与多个变量相关的缝内气体压力分布函数,利用迭代法实现了模型的数值求解,获得了缝内气体压力分布随时间的动态变化规律,并分析了不同特征参数对裂缝起裂扩展与止裂过程的影响。实例计算结果表明:(1)随着裂缝扩展的进行,爆燃气体流动尖端与裂缝尖端经历了由重合到不重合再到重合的过程;(2)地应力越大,裂缝起裂扩展越困难,爆燃气体有效致裂作用时间越短,最终得到的裂缝扩展长度也越小;(3)初始裂缝越长,裂缝更容易起裂扩展,爆燃气体能量利用率越高,裂缝扩展更长;(4)岩石断裂韧性的改变对裂缝起裂、止裂和裂缝扩展长度没有明显的影响;(5)升压速率越小,爆燃气体有效致裂作用时间越长,最终裂缝扩展也更长,但对裂缝起裂压力与止裂压力几乎没有影响。Abstract: Combined with the crack tip stress intensity factor criterion of linear elastic fracture mechanics, the model of initiation and extension of gas-driven fractures by compound perforation is established.A function with multiple variables describing gas pressure distribution in crack is proposed herein to realize the numerical resolution of the model using the iteration method, and the dynamic change law of gas pressure distribution in fracture with time is obtained.In addition, the effect of different characteristic parameters on the process of fracture initiation and extension as well as fracture arrest is analyzed.The example calculation shows: (1)with the progress of fracture extension, the leading edge of the flow and the fracture tip will experience the process from coincidence to noncoincidence and then to coincidence; (2)the fracture initiation and extension are more difficult as in-situ stress is greater, which makes the effective time of gas-driven and the fracture shorter; (3)the fracture initiation and extension are easier and the utilization of gas energy is higher as the initial crack is longer, resulting in the longer crack; (4)the change of fracture toughness has no obvious influence on the crack initiation and extension as well as the fracture arrest; (5)both the effective time of gas-driven and the fracture are longer as the rate of pressure rise is smaller, but its change has nearly no impact on the pressure of the fracture initiation and arrest.
-
表 1 不同地应力下的裂缝扩展情况
Table 1. Fracture extension under different in-situ stresses
σ/MPa ti/ms pi/MPa ta/ms pa/MPa L/m 22 22.3 24.17 157.2 23.61 4.93 25 23.8 27.22 131.8 26.78 3.85 28 25.4 30.47 112.0 30.22 2.93 表 2 不同初始裂缝长度下的裂缝扩展情况
Table 2. Fracture extension under differentinitial crack lengths
L0/m ti/ms pi/MPa ta/ms pa/MPa L/m 0.10 24.3 28.23 130.3 26.98 3.53 0.45 23.8 27.22 131.8 26.78 3.85 1.00 23.7 27.02 133.5 26.55 4.31 表 3 不同岩石断裂韧性下的裂缝扩展情况
Table 3. Fracture extension under different fracture toughnesses
KIC/(MPa·m0.5) ti/ms pi/MPa ta/ms pa/MPa L/m 0.5 23.8 27.22 131.8 26.78 3.85 1.0 24.1 27.83 130.2 26.99 3.82 2.0 24.7 29.05 128.7 27.20 3.76 表 4 不同升压速率下的裂缝扩展情况
Table 4. Fracture extension at different rates of pressure rise
vp/(MPa·ms-1) ti/ms pi/MPa ta/ms pa/MPa L/m 1.70 23.8 27.22 131.8 26.78 3.85 1.22 27.5 27.22 161.7 26.65 4.39 0.92 31.4 27.22 185.4 26.50 4.83 -
[1] 李克明, 张曦.高能复合射孔技术及应用[J].石油勘探与开发, 2002, 29(5): 91-92. doi: 10.3321/j.issn:1000-0747.2002.05.030Li Ke-ming, Zhang Xi. High energy combined perforation technique and its application[J]. Petroleum Exploration and Development, 2002, 29(5): 91-92. doi: 10.3321/j.issn:1000-0747.2002.05.030 [2] 孙新波, 刘辉, 王宝兴, 等.复合射孔技术综述[J].爆破器材, 2007, 36(5): 29-31. doi: 10.3969/j.issn.1001-8352.2007.05.010Sun Xin-bo, Liu Hui, Wang Bao-xin, et al. Review of propellant perforation techniques[J]. Explosive Materials, 2007, 36(5): 29-31. doi: 10.3969/j.issn.1001-8352.2007.05.010 [3] 范天佑.断裂理论基础[M].北京: 科学出版社, 2003. [4] 曹言光, 刘长松, 林平, 等.应用断裂力学理论建立油气井压裂时岩石破裂压力计算模型[J].西安石油学院学报:自然科学版, 2003, 18(4): 36-39. doi: 10.3969/j.issn.1673-064X.2003.04.010Cao Yan-guang, Liu Chang-song, Lin Ping, et al. Establishing the models for calculating the fracturing pressure of formation rock during oil/gas wells fracturing by using fracture mechanics theory[J]. Journal of Xi'an Petroleum Institute: Natural Science Edition, 2003, 18(4): 36-39. doi: 10.3969/j.issn.1673-064X.2003.04.010 [5] Nilson R H. Gas-driven fracture propagation[J]. Journal of Applied Mechanics, 1981, 48(4): 757-762. doi: 10.1115/1.3157729 [6] Nilson R H, Griffiths S K. Numerical analysis of hydraulically-driven fractures[J]. Computer Methods in Applied Mechanics and Engineering, 1983, 36(3): 359-370. doi: 10.1016/0045-7825(83)90129-9 [7] Nilson R H, Proffer W J, Duff R E. Modeling of gas-driven fractures induced by propellant combustion within a borehole[J]. International Journal of Rock Mechanics and Mining Sciences, 1985, 22(1): 3-19. [8] Nilson R H. An integral method for predicting hydraulic fracture propagation driven by gasses or liquids[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(2): 191-211. doi: 10.1002/nag.1610100207 [9] Petitjean L, Couet B. Modeling of gas-driven fracture propagation for oil and gas stimulation[C]//SPE28084, Rock Mechanics in Petroleum Engineering. Delft, Netherlands, 1994. [10] Yang D W, Risnes R. Numerical modelling and parametric analysis for designing propellant gas fracturing[C]//SPE71641, SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 2001. [11] 王家来, 刘积铭.岩石爆破破岩机理的损伤力学分析[J].岩石力学与工程学报, 1996, 15(增刊): 515-518.Wang Jia-lai, Liu Ji-ming. Damage analysis on rock blasting mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(suppl): 515-518. [12] 杨小林, 王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击, 2001, 21(2): 111-116. doi: 10.3321/j.issn:1001-1455.2001.02.005Yang Xiao-lin, Wang Meng-shu. Mechanism of rock crack growth under detonation gas loading[J]. Explosion and Shock Waves, 2001, 21(2): 111-116. doi: 10.3321/j.issn:1001-1455.2001.02.005 [13] 陈莉静, 李宁, 王俊奇.高能复合射孔爆生气体作用下预存裂缝起裂扩展研究[J].石油勘探与开发, 2005, 32(6): 91-94. doi: 10.3321/j.issn:1000-0747.2005.06.022Chen Li-jing, Li Ning, Wang Jun-qi. Initiation and extension of existing cracks under detonation gas loading in a high energy combined perforation[J]. Petroleum Exploration and Development, 2005, 32(6): 91-94. doi: 10.3321/j.issn:1000-0747.2005.06.022 [14] 陈莉静, 李宁, 王俊奇.油井爆生气体对岩石劈裂作用机制探索[J].岩石力学与工程学报, 2006, 25(11): 2369-2372. doi: 10.3321/j.issn:1000-6915.2006.11.031Chen Li-jing, Li Ning, Wang Jun-qi. Approximative analysis of fracture propagation driven by detonation gas in oil well[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2369-2372. doi: 10.3321/j.issn:1000-6915.2006.11.031 [15] 李宁, 陈莉静, 张平.爆生气体驱动岩石裂缝动态扩展分析[J].岩土工程学报, 2006, 28(4): 460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007Li Ning, Chen Li-jing, Zhang Ping. Dynamic analysis for fracturing progress by detonation gas[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 460-463. doi: 10.3321/j.issn:1000-4548.2006.04.007 [16] Petitjean L, Couet B. Modeling of fracture propagation during overbalanced perforating[C]//SPE28560, SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 1994. 期刊类型引用(18)
1. 孙伟,张广清. 变载荷压裂特征研究进展及展望. 石油科学通报. 2025(01): 87-106 .
百度学术2. 王宇,翟成,余旭,孙勇,丛钰洲. 高温作用下五峰组–龙马溪组页岩动力学特征及损伤演化规律研究. 岩石力学与工程学报. 2023(05): 1110-1123 .
百度学术3. 邱思杨,李沁,陈文玲,石明星,张建伟,雷雲. 破碎岩石内水力裂缝扩展数值模拟研究. 科学技术与工程. 2023(24): 10281-10297 .
百度学术4. 柴亚博,罗宁,张浩浩,李鹏龙,周嘉楠,廖禹成. 甲烷燃爆载荷下页岩裂缝网络发育特征与定量分析. 煤炭学报. 2023(12): 4308-4321 .
百度学术5. 杨敬轩,于斌,匡铁军,刘长友,李文龙. 基于煤岩深孔爆破问题的液体炸药研发与技术. 煤炭学报. 2021(06): 1874-1887 .
百度学术6. 罗伟,林永茂,李海涛. 碳酸盐岩储层射孔穿深的影响规律. 爆破器材. 2020(01): 49-53 .
百度学术7. 罗伟. 川西海相碳酸盐岩储层射孔效率测试评价试验. 工程爆破. 2020(01): 1-6 .
百度学术8. 赵旭. 高能气体压裂过程中压井液运动计算模型研究. 爆破器材. 2020(02): 29-33 .
百度学术9. 黄宇,马宏昊,王林桂,沈兆武,张中雷,姚象洋,陈亚建,王奕鑫. 铝纤维混合燃料破岩激波管作用机理研究. 工程爆破. 2020(02): 17-23 .
百度学术10. 于法浩,李越,尚宝兵,陈征,刘国正. 爆燃压裂井井筒安全控制技术研究与应用. 能源与环保. 2020(12): 71-75 .
百度学术11. 尹虎琛,黄建宁,董时正. 薄互层砂体中层理缝对压裂裂缝扩展认识与实践. 石油化工应用. 2020(11): 65-69 .
百度学术12. 闫炎,管志川,赵效锋,杨才. 固井水泥射孔力学响应规律及损伤特征. 东北石油大学学报. 2019(03): 101-108+11 .
百度学术13. 赵旭. 深层水平井多级复合深穿透定向射孔技术应用研究. 爆破器材. 2019(06): 43-47 .
百度学术14. 尹虎琛,徐洋,王忍峰. 径向缝网压裂工艺技术在超低渗储层的应用. 钻采工艺. 2019(06): 58-61+4 .
百度学术15. 马英文,付团辉,吴泽林,龙海峰. 渤中34-2/4油田外置式复合射孔技术. 油气井测试. 2018(01): 31-36 .
百度学术16. 尹虎琛,赵飞,彭国勋,李祎,刘孟升. 集约式体积改造工艺技术在Z区块的应用. 石油化工应用. 2017(09): 62-66 .
百度学术17. 张财贵,曹富,李炼,周妍,黄润秋,王启智. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度. 力学学报. 2016(03): 624-635 .
百度学术18. 武龙,杨慧壁,魏江伟,张进科,张倩. 姬塬油田低产低效井多缝改造工艺技术研究. 石油化工应用. 2016(05): 33-37 .
百度学术其他类型引用(17)
-



下载:
百度学术