Mechanism of expanding fracture of 45 steel cylinder shells driven by modified SHPB
-
摘要: 采用改进型霍普金森压杆实验技术,对不同膨胀断裂状态的45号钢薄壁金属圆柱管进行了冻结回收,直接观测了薄壁金属圆柱管动态膨胀断裂过程中的裂纹萌生、扩展情况以及最终断裂模式等断裂演化特征。对冻结回收样品进行的金相显微分析完整观察到了裂纹萌生、扩展直至断裂的整个膨胀断裂过程,并得出以下结论:薄壁金属圆柱管在中应变率的膨胀断裂过程中,拉伸和剪切断裂机制起主导作用。裂纹萌生于外壁面,并由外向内扩展,断裂模式随加载应变率的提高逐渐由拉剪混合向纯剪切过渡。与爆轰加载的高应变率薄壁金属圆柱管断裂过程不同的是,随加载载荷的增加,薄壁金属圆柱管的断裂逐渐由拉伸断裂向剪切断裂过渡,而非绝热剪切断裂,这种差异的产生原因尚待研究。Abstract: Cylinder shells of 45 steel were freezing recovery experimented using a modified SHPB device to observe the whole fracture process, including crack initiation, crack propagation conditions and final fracture modes.By microanalysing the internal structures of the recovery samples, the whole fracture process was observed, and some conclusions were obtained:the tensile and shear fracture mechanism played a dominant role in the dynamic fracture process of cylinder shells, cracks initiated from the outer wall, then propagated into inner wall, the fracture mode changed from tensile-shear mixing to pure shear with increasing load strain rate.There were some differences between these experimental results and the results loaded by detonation, which need us to further study, that the fracture modes would change from tensile to pure shear in these experimental results, rather than adiabatic shear in detonations with increasing strain rate
-
Key words:
- solid mechanics /
- mechanism of fracture /
- SHPB /
- metal cylinder shells /
- dynamic expanding fracture
-
图 3 某发实验原始电压波形图[10]
Figure 3. Original voltage waveform of one experiment
表 1 圆柱管在不同加载应变率下的实验结果
Table 1. Experimental results of cylinder shells under different strain-rate
No. D/mm v/(m·s-1) σn/MPa εr t/μs $\dot{\varepsilon}_{r} / \mathrm{s}^{-1}$ 断裂状态 1 8.04 20 134 0.20 154 1.3×103 拉伸裂纹萌生 2 8.04 20 134 0.21 160 1.3×103 拉剪混合 3 8.04 20 134 0.21 160 1.3×103 拉剪混合 4 8.04 25 145 0.22 147 1.5×103 剪切裂纹萌生 5 8.04 25 145 0.23 150 1.5×103 纯剪切断裂 6 8.04 25 145 0.23 150 1.5×103 纯剪切断裂 -
[1] Mott N F. A theory of fragmentation of shells and bombs[M]//Fragmentation of Ring and Shells. Springer Berlin Heidelberg, 2006: 243-294. [2] Taylor G I. The fragmentation of tubular bombs[C]//Batchelor G K. The Scientific Papers of Sir Geoffrey Ingram Taylor: Vol. 3. Cambridge: Cambridge University Press, 1963: 387-390. [3] 马晓青.冲击动力学[M].北京: 北京理工大学出版社, 1992: 282-294. [4] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应[J].爆炸与冲击, 2006, 26(2): 35-39. http://www.cqvip.com/Main/Detail.aspx?id=21769886Tang Tie-gang, Li Qing-zhong, Sun Xue-lin, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J]. Explosion and Shock Waves, 2006, 26(2): 35-39. http://www.cqvip.com/Main/Detail.aspx?id=21769886 [5] 汤铁钢, 李庆忠, 陈永涛, 等.实现材料高应变率拉伸加载的爆炸膨胀环技术[J].爆炸与冲击, 2009, 29(1): 45-46. doi: 10.3321/j.issn:1001-1455.2009.01.009Tang Tie-gang, Li Qing-zhong, Chen Yong-tao, et al. An improved technique for dynamic tension of metal ring by explosive loading[J]. Explosion and Shock Waves, 2009, 29(1): 45-46. doi: 10.3321/j.issn:1001-1455.2009.01.009 [6] 汤铁钢, 谷岩, 李庆忠, 等.爆轰加载下金属柱管膨胀破裂过程研究[J].爆炸与冲击, 2003, 23(6): 529-533. doi: 10.3321/j.issn:1001-1455.2003.06.008Tang Tie-gang, Gu Yan, Li Qing-zhong, et al. Expanding fracture of steel cylinder shell by detonation driving[J]. Explosion and Shock Waves, 2003, 23(6): 529-533. doi: 10.3321/j.issn:1001-1455.2003.06.008 [7] Hoggatt C R, Recht R F. Fracture behavior of tubular bombs[J]. Journal of Applied Physics, 1968, 39(3): 1856-1862. doi: 10.1063/1.1656442 [8] 胡八一, 董庆东, 韩长生, 等.内部爆轰加载下的钢管膨胀断裂研究[J].爆炸与冲击, 1993, 13(1): 49-54. http://www.cqvip.com/Main/Detail.aspx?id=990933Hu Ba-yi, Dong Qing-dong, Han Chang-sheng, et al. Studies of expansion and fracture of explosive-filled steel cylinders[J]. Explosion and Shock Waves, 1993, 13(1): 49-54. http://www.cqvip.com/Main/Detail.aspx?id=990933 [9] Grady D E, Benson D A. Fragmentation of metal rings by electromagnetic loading[J]. Experimental Mechanics, 1983, 23(4): 393-400. doi: 10.1007/BF02330054 [10] 叶想平, 李英雷, 李英华.基于SHPB装置的膨胀圆柱管实验技术[J].爆炸与冲击, 2012, 32(5): 528-534. doi: 10.3969/j.issn.1001-1455.2012.05.013Ye Xiang-ping, Li Ying-lei, Li Ying-hua. An experimental technique for expanding of metal cylinder based on the SHPB[J]. Explosion and Shock Waves, 2012, 32(5): 528-534. doi: 10.3969/j.issn.1001-1455.2012.05.013