铝纤维对黑索今水下爆炸性能的影响

林谋金 马宏昊 沈兆武 焦龙

林谋金, 马宏昊, 沈兆武, 焦龙. 铝纤维对黑索今水下爆炸性能的影响[J]. 爆炸与冲击, 2014, 34(3): 379-384. doi: 10.11883/1001-1455(2014)03-0379-06
引用本文: 林谋金, 马宏昊, 沈兆武, 焦龙. 铝纤维对黑索今水下爆炸性能的影响[J]. 爆炸与冲击, 2014, 34(3): 379-384. doi: 10.11883/1001-1455(2014)03-0379-06
Lin Mou-jin, Ma Hong-hao, Shen Zhao-wu, Jiao Long. Effect of aluminum fiber on underwater detonation performance of RDX[J]. Explosion And Shock Waves, 2014, 34(3): 379-384. doi: 10.11883/1001-1455(2014)03-0379-06
Citation: Lin Mou-jin, Ma Hong-hao, Shen Zhao-wu, Jiao Long. Effect of aluminum fiber on underwater detonation performance of RDX[J]. Explosion And Shock Waves, 2014, 34(3): 379-384. doi: 10.11883/1001-1455(2014)03-0379-06

铝纤维对黑索今水下爆炸性能的影响

doi: 10.11883/1001-1455(2014)03-0379-06
基金项目: 国家自然科学基金重点项目(51134012);国家自然科学基金面上项目(51174183)
详细信息
    作者简介:

    林谋金(1985—), 男, 博士研究生

    通讯作者:

    Ma Hong-hao, hhma@ustc.edu.cn

  • 中图分类号: O381

Effect of aluminum fiber on underwater detonation performance of RDX

Funds: Supported by the National Natural Science Foundation of China (51134012, 51174183)
  • 摘要: 将铝纤维添加到RDX中得到新型非理想炸药,并与RDX进行水下爆炸对比实验,得到2种炸药在不同位置的压力时程曲线,经过分析计算得到两者水下爆炸的冲击波压力峰值、冲量、冲击波能、气泡脉动周期以及气泡能。结果表明:距离药柱相同位置处,铝纤维炸药的压力峰值低于RDX,铝纤维炸药的冲击波冲量高于RDX,其差值受离药柱的距离影响不大。与RDX相比,铝纤维炸药的比冲击波能降低了2%~5.2%,比气泡能提高了9.4%~23.36%,总能量平均提高了3.5%。铝纤维炸药比气泡能与总能量的比值为55%~60%,高于RDX的50%~53%,其总能量与爆热比值为74%~84%,低于RDX的89%~95%。
  • 图  1  水下爆炸实验示意图

    Figure  1.  Assembly experimental system of underwater explosion

    图  2  2种炸药压力时程曲线

    Figure  2.  Pressure-time curves of two different types of explosive

    图  3  2种炸药压力-R/R0曲线

    Figure  3.  Pressure-R/R0 curves of two different types of explosive

    图  4  2种炸药冲击波冲量-R/R0曲线

    Figure  4.  Impulse-R/R0 curves of two different types of explosive

    图  5  空中爆炸后遗留的铝纤维碎屑

    Figure  5.  Al fiber debris after air explosion

    表  1  2种炸药水下爆炸能量输出的相关参数

    Table  1.   Energy output parameters of two different explosives in underwater explosion

    炸药 R/R0 Tb/ms Es/
    (MJ·kg-1)
    μ Eb/
    (MJ·kg-1)
    E/
    (MJ·kg-1)
    (Eb/E)/
    %
    Qv[12]/
    (MJ·kg-1)
    (E/Qv)/
    %
    铝纤维
    炸药
    70 59.640 1.089 2.055 2.791 5.029 55.50 6.443 78.06
    90 62.617 1.054 2.054 3.252 5.418 60.03 6.443 84.09
    120 62.617 1.033 2.054 3.253 5.374 60.52 6.443 83.41
    150 59.640 0.985 2.055 2.776 4.799 57.84 6.443 74.48
    RDX 70 58.040 1.169 2.209 2.551 5.135 49.69 5.378 95.47
    90 58.653 1.102 2.202 2.636 5.062 52.07 5.378 94.13
    120 58.653 1.044 2.202 2.629 4.929 53.34 5.378 91.64
    150 58.040 1.027 2.209 2.548 4.817 52.91 5.378 89.56
    注:表中数值为实验平均值。
    下载: 导出CSV
  • [1] 陈朗, 张寿齐, 赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击, 1999, 19(3): 58-63.

    Chen Lang, Zhang Shou-qi, Zhao Yu-hua. Study of the metal acceleration capacities of aluminized explosives with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3): 58-63.
    [2] 丁刚毅, 徐更光.含铝炸药二维冲击起爆的爆轰数值模拟[J].兵工学报, 1994(4): 25-29.

    Ding Gang-yi, Xu Geng-guang. 2-dimensional modelling of detonation in explosives containing aluminium[J]. Acta Armamentarii, 1994(4): 25-29.
    [3] Howard W M, Fried L E, Souers P C. Modeling of non-ideal aluminized explosives[C]//11th American Physical Society Topical Group on Shock Compression of Condensed Matter. Snowbird, UT, 1999: 388-392.
    [4] Guirguis R H, Miller P J. Time-dependent equations of state for aluminized underwater explosives[C]//Proceedings of 10th Symposium on Detonation. Boston, USA, 1993: 126-132.
    [5] 廖学燕, 沈兆武, 姚保学.含铝纤维复合炸药的能量输出和力学性能[J].爆炸与冲击, 2010, 30(4): 424-428.

    Liao Xue-yan, Shen Zhao-wu, Yao Bao-xue. Energy output and mechanical strength of aluminum fiber reinforced composite explosives[J]. Explosion and Shock Waves, 2010, 30(4): 424-428.
    [6] 廖学燕.铝纤维复合炸药研究[D].合肥: 中国科学技术大学, 2010: 67-68.
    [7] 陆明.炸药的分子与配方设计[M].北京: 兵器工业出版社, 2004: 258-259.
    [8] 周霖, 徐更光.含铝炸药水中爆炸能量输出结构[J].火炸药学报, 2003, 26(1): 30-32. doi: 10.3969/j.issn.1007-7812.2003.01.009

    Zhou Lin, Xu Geng-guang. Configuration of underwater energy output for aluminized explosive mixtures[J]. Chinese Journal of Explosives & Propellants, 2003, 26(1): 30-32. doi: 10.3969/j.issn.1007-7812.2003.01.009
    [9] 封雪松, 赵省向, 刁小强.含硼金属炸药水下能量的实验研究[J].火炸药学报, 2009, 32(5): 21-24. doi: 10.3969/j.issn.1007-7812.2009.05.007

    Feng Xue-song, Zhao Sheng-xiang, Diao Xiao-qiang. Experimental research of underwater energy of explosive containing boron metal[J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 21-24. doi: 10.3969/j.issn.1007-7812.2009.05.007
    [10] 奥尔连科.爆炸物理学[M].孙承纬, 译.北京: 科学出版社, 2011: 608-609.
    [11] Bjarnholt G, Holmberg R. Explosives expansion works in underwater detonations[C]//Proceedings of 6th Symposium(International)on Detonation. San Diego, 1976: 540-550.
    [12] 孙业斌, 惠君明, 曹欣茂.军用混合炸药[M].北京: 兵器工业出版社, 1995: 338-339.
    [13] 池家春, 马冰. TNT/RDX(40/60)炸药球水中爆炸波研究[J].高压物理学报, 1999, 13(3): 199-204. doi: 10.3969/j.issn.1000-5773.1999.03.008

    Chi Jia-chun, Ma Bing. Underwater explosion wave by a spherical charge of composition B-3[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 199-204. doi: 10.3969/j.issn.1000-5773.1999.03.008
    [14] 张远平, 池家春, 龚晏青.含铝炸药水下爆炸性能的实验研究[J].高压物理学报, 2010, 24(4): 316-320.

    Zhang Yuan-ping, Chi Jia-chun, Gong Yan-qing. Experimental study on underwater explosion performance of aluminized explosive[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 316-320.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  3064
  • HTML全文浏览量:  354
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-17
  • 修回日期:  2012-12-22
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回