冲击载荷作用下矩形薄板的弹性动力屈曲

毛柳伟 王安稳 邓磊 韩大伟

毛柳伟, 王安稳, 邓磊, 韩大伟. 冲击载荷作用下矩形薄板的弹性动力屈曲[J]. 爆炸与冲击, 2014, 34(4): 385-391. doi: 10.11883/1001-1455(2014)04-0385-07
引用本文: 毛柳伟, 王安稳, 邓磊, 韩大伟. 冲击载荷作用下矩形薄板的弹性动力屈曲[J]. 爆炸与冲击, 2014, 34(4): 385-391. doi: 10.11883/1001-1455(2014)04-0385-07
Mao Liu-wei, Wang An-wen, Deng Lei, Han Da-wei. Dynamic buckling of elastic rectangular thin platessubjected to in-plane impact[J]. Explosion And Shock Waves, 2014, 34(4): 385-391. doi: 10.11883/1001-1455(2014)04-0385-07
Citation: Mao Liu-wei, Wang An-wen, Deng Lei, Han Da-wei. Dynamic buckling of elastic rectangular thin platessubjected to in-plane impact[J]. Explosion And Shock Waves, 2014, 34(4): 385-391. doi: 10.11883/1001-1455(2014)04-0385-07

冲击载荷作用下矩形薄板的弹性动力屈曲

doi: 10.11883/1001-1455(2014)04-0385-07
基金项目: 国家自然科学基金项目(11172330)
详细信息
    作者简介:

    毛柳伟(1985—), 男, 博士研究生

  • 中图分类号: O347.3

Dynamic buckling of elastic rectangular thin platessubjected to in-plane impact

Funds: Supported bythe National Natural Science Foundation of China (11172330)
More Information
  • 摘要: 为了研究冲击载荷作用下考虑应力波效应弹性矩形薄板的动力屈曲,根据动力屈曲发生瞬间的能量转换和守恒准则,导出板的屈曲控制方程和波阵面上的补充约束条件,真实的屈曲位移应同时满足控制方程和波阵面上的附加约束条件。满足上述条件,建立了该问题的完整数值解法,对屈曲过程中冲击载荷、屈曲模态和临界屈曲长度之间的关系进行研究,定量计算了横向惯性效应对提高薄板动力屈曲临界应力的贡献。研究表明:板的厚宽比一定时,临界屈曲长度随冲击载荷的增大而减小;由于屈曲时的横向惯性效应,应力波作用下薄板一阶临界力参数是相应边界板的静力失稳临界力参数的1.5倍;随着边界约束逐渐减弱,板临界力参数逐渐减小,动力特征参数逐渐增大。
  • 图  1  矩形薄板受冲击载荷作用

    Figure  1.  The rectangular thin plate subjected to in-plane impact load

    图  2  特征参数与传播距离的关系

    Figure  2.  Characteristic parameters versus propagation distances

    图  3  边界条件CCCC下薄板屈曲模态

    Figure  3.  The buckling modes of thin plate under boundary condition CCCC

    表  1  临界力参数和动力特征参数

    Table  1.   Critical-load parameters and dynamic characteristic parameters

    边界条件σ/MPaΛ1(0)Λ1(1)Λ2(1)Λ1(2)Λ2(2)Λ1(3)Λ2(3)
    1809.3514.343.5619.956.9226.3410.21
    CCCC1508.7713.253.0118.706.1424.419.03
    1208.3612.052.2616.935.02--
    1809.0414.103.8719.797.4226.2610.66
    CSCS1508.3113.123.4818.576.6524.229.58
    1207.6411.902.9916.885.78--
    1808.8113.874.1819.717.9025.5611.26
    CFCF1507.9912.733.8317.997.2023.4410.32
    1207.1711.123.3415.956.38--
    下载: 导出CSV
  • [1] Ari-Gur J, Singer J, Weller T. Dynamic buckling of plates under longitudinal impact[J]. Israel Journal of Technology, 1981, 19(1): 57-64. http://www.researchgate.net/publication/307222378_Dynamic_buckling_of_plates_under_longitudinal_impact
    [2] Petry D, Fahlbusch G. Dynamic buckling of thin isotropic plates subjected to in-plane impact[J]. Thin-Walled Structures, 2000, 38(3): 267-283. doi: 10.1016/S0263-8231(00)00037-9
    [3] Cui S, Hao H, Cheong H K. Numerical analysis of dynamic buckling of rectangular plates subjected to intermediate-velocity impact[J]. International Journal of Impact Engineering, 2001, 25(2): 147-167. doi: 10.1016/S0734-743X(00)00035-X
    [4] Cui S, Cheong H K, Hao H. Experimental study of dynamic buckling of plates under fluid-solid slamming[J]. International Journal of Impact Engineering, 1999, 22(7): 675-691. doi: 10.1016/S0734-743X(99)00022-6
    [5] Xue Z, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanic Science, 2003, 45(4): 687-705. doi: 10.1016/S0020-7403(03)00108-5
    [6] Xue Z, Hutchinson J W. A comparative study of impulse-resistant metallic sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283-1305. doi: 10.1016/j.ijimpeng.2003.08.007
    [7] Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3): 386-401. doi: 10.1115/1.1629109
    [8] Vaughn D G, Hutchinson J W. Bucklewaves[J]. European Journal of Mechanics A: Solids, 2006, 25(1): 1-12. doi: 10.1016/j.euromechsol.2005.09.003
    [9] Vaughn D G, Canning J M, Hutchinson J W. Coupled plastic wave propagation and column buckling[J]. Journal of Applied Mechanics, 2005, 72(1): 139-146. doi: 10.1115/1.1825437
    [10] 施连会, 王安稳.面内阶跃载荷下薄板弹性动力屈曲差分解[J].海军工程大学学报, 2008, 20(4): 25-29. http://d.wanfangdata.com.cn/Periodical/hjgcdxxb200804007

    Shi Lian-hui, Wang An-wen. Difference solution to elastic dynamic buckling of thin plates subject to in-plane step load[J]. Journal of Naval University of Engineering, 2008, 20(4): 25-29. http://d.wanfangdata.com.cn/Periodical/hjgcdxxb200804007
    [11] 韩大伟, 王安稳, 毛柳伟, 等.弹性压应力波作用下矩形薄板动力屈曲[J].工程力学, 2012, 29(11): 12-15. doi: 10.6052/j.issn.1000-4750.2011.04.0204

    Han Da-wei, Wang An-wen, Mao Liu-wei, et al. Analytical resolution to dynamic buckling of rectangular thin plates under elastic compression wave[J]. Engineering Mechanics, 2012, 29(11): 12-15. doi: 10.6052/j.issn.1000-4750.2011.04.0204
    [12] 梅凤翔, 刘端, 罗勇.高等分析力学[M].北京: 北京理工大学出版社, 1991.
    [13] 陈铁云, 沈惠中.结构的屈曲[M].上海: 上海科学技术文献出版社, 1993.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  4516
  • HTML全文浏览量:  485
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-07
  • 修回日期:  2013-03-06
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回