Promotion of prediction ability of impact limit equationon honeycomb sandwich panel
-
摘要: 蜂窝夹层板撞击极限方程是空间碎片撞击航天器风险评估的关键技术,目前描述其预测能力的指标主要有总体、安全预测正确率和绝对、相对误差。基于131个蜂窝夹层板的实验数据,分别描述各个预测指标在方程系数空间的变化特征,并采用层次化思路进行方程预测指标提升的探讨。结果发现,进行方程优化时,预测概率型指标可精确优化,而预测误差型指标可快速优化;总体预测正确率作为首要预测指标可优先用于研究航天器的在轨防护特性,而安全预测正确率作为首要指标则可优先用于其设计安全性。Abstract: Impact limit equations of honeycomb sandwich panel are the key of risk assessment of the spacecraft's impact from space debris. At present, the indicators of prediction ability mainly are the rate of correctly prediction (including the total rate and the safe rate) based on the prediction probability, and prediction error (including the absolute error and the relative error) based on the deviation of diameter predicted. In order to improve the prediction ability of equations, the variation of each predictive indicator in coefficient space of the equations was described based on 131 experimental data of honeycomb sandwich panel from the literature. And hierarchical analysis was used to investigate the promotion of prediction indicators of the equations. The results show that, equation optimization lead to accurately optimization of indicators of prediction probability, quickly optimization of prediction error. The total rate of correctly prediction can be used in the study of spacecraft's in-orbit protective properties as the primary indicator, and the safe rate of correctly prediction can be used in the security evaluation of design as the primary indicator. The prediction ability of the optimized equation has been greatly enhanced compared with the original equation.
-
表 1 预测指标体系列表
Table 1. List of predictor systems
体系 一级指标 二级指标 三级指标 1 Pt Ps S2 2 Pt Ps f2 3 Ps Pt S2 4 Ps Pt f2 5 S2 - - 6 f2 - - 表 2 方程优化前后对比
Table 2. Comparison of the equations before and after optimization
体系 λ1 λ2 Pt/% Ps/% S2 f2 优化前 1.000 1.000 72 76 0.061 5 4.932 4 1 1.050 0.557 85 95 0.017 5 0.691 0 2 1.050 0.557 85 95 0.017 5 0.691 0 3 0.836 0.444 73 100 0.038 5 1.835 8 4 0.836 0.444 73 100 0.038 5 1.835 8 5 1.022 0.615 83 92 0.016 8 0.730 3 6 1.030 0.568 82 92 0.017 3 0.686 9 -
[1] Christiansen E, Lambert M, Stokes H. IADC protection manual[Z]. Germany: Inter Agency Debris Committee, 2002. [2] 袁俊刚, 曲广吉, 孙治国, 等.空间碎片防护结构设计优化理论方法研究[J].宇航学报, 2007, 28(2): 243-248. doi: 10.3321/j.issn:1000-1328.2007.02.001Yuan Jun-gang, Qu Guang-ji, Sun Zhi-guo, et al. Optimization methodology for shield structure against space debris[J]. Journal of Astronautics, 2007, 28(2): 243-248. doi: 10.3321/j.issn:1000-1328.2007.02.001 [3] 徐福祥.卫星工程[M].北京: 中国宇航出版社, 2002. [4] 闫军, 郑世贵, 范晶岩.弹道极限确定精度对空间碎片风险评估的影响[C]//2007全国结构动力学学术研讨会论文集.南昌: 中国振动工程学会结构动力学专业委员会, 2007: 309-313. [5] Schonberg W P, Evans H J, Williamsen J E, et al. Uncertainty considerations for ballistic limit equations[C]//Proceedings of the 4th European Conference on Space Debris. Darmstadt: ESA Publications Division, 2005: 477-482. [6] Christiansen E L. Design and performance equations for advanced meteoroid and debris shields[J]. International Journal of Impact Engineering, 1993, 14(1): 145-156. http://www.sciencedirect.com/science/article/pii/0734743X9390016Z [7] Drolshagen G, Borge J. ESABASE/debris-meteoroid/debris impact analysis technical description[Z]. ESABASE, 1992. [8] Ryan S, Schaefer F, Destefanis R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures[J]. Advances in Space Research, 2008, 41(7): 1152-1166. doi: 10.1016/j.asr.2007.02.032 [9] Lambert M, Schäfer F K, Geyer T. Impact damage on sandwich panels and multi-layer insulation[J]. International Journal of Impact Engineering, 2001, 26(1): 369-380. http://www.sciencedirect.com/science/article/pii/S0734743X01001087 [10] Taylor E A, Herbert M K, Vaughan B, et al. Hypervelocity impact on carbon fibre reinforced plastic/aluminium honeycomb: Comparison with Whipple bumper shields[J]. International Journal of Impact Engineering, 1999, 23(1): 883-893. doi: 10.1016/S0734-743X(99)00132-3 [11] Schäfer F, Destefanis R, Ryan S, et al. Hypervelocity impact testing of CFRP/Al honeycomb satellite structures[C]//Proceedings of the 4th European Conference on Space Debris. Darmstadt: ESA Publications Division, 2005: 407-412. [12] Schäfer F, Schneider E, Lambert M. Review of ballistic limit equations for CFRP structure walls of satellites[C]//Proceedings of the 5th International Symposium on Environmental Testing for Space Programmes. Noordwijk: ESA Publications Division, 2004: 431-443.