异型头部弹体增强侵彻性能机理研究

刘坚成 黄风雷 皮爱国 柴传国 武海军

刘坚成, 黄风雷, 皮爱国, 柴传国, 武海军. 异型头部弹体增强侵彻性能机理研究[J]. 爆炸与冲击, 2014, 34(4): 409-414. doi: 10.11883/1001-1455(2014)04-0409-06
引用本文: 刘坚成, 黄风雷, 皮爱国, 柴传国, 武海军. 异型头部弹体增强侵彻性能机理研究[J]. 爆炸与冲击, 2014, 34(4): 409-414. doi: 10.11883/1001-1455(2014)04-0409-06
Liu Jian-cheng, Huang Feng-lei, Pi Ai-guo, Chai Chuan-guo, Wu Hai-jun. On enhanced penetration performance of modified nose projectiles[J]. Explosion And Shock Waves, 2014, 34(4): 409-414. doi: 10.11883/1001-1455(2014)04-0409-06
Citation: Liu Jian-cheng, Huang Feng-lei, Pi Ai-guo, Chai Chuan-guo, Wu Hai-jun. On enhanced penetration performance of modified nose projectiles[J]. Explosion And Shock Waves, 2014, 34(4): 409-414. doi: 10.11883/1001-1455(2014)04-0409-06

异型头部弹体增强侵彻性能机理研究

doi: 10.11883/1001-1455(2014)04-0409-06
基金项目: 国家自然科学基金项目(11202029);国防基础科研计划项目(C1520110001)
详细信息
    作者简介:

    刘坚成(1989—), 男, 博士研究生

  • 中图分类号: O385

On enhanced penetration performance of modified nose projectiles

Funds: Supported bythe National Natural Science Foundation of China (11202029)
More Information
  • 摘要: 为了了解理想刚性弹丸的高速/超高速动能侵彻中弹体头部形状对侵彻能力的影响,在空腔膨胀理论基础上,基于双卵形异型头部设计,分析了头部形状系数与双卵形特征参数的依赖关系,得到了不同异型头部弹体对侵彻性能的影响规律,提出了具有较小侵彻阻力的异型头部侵彻体设计方案。与不同头部侵彻实验结果对比表明,本文的分析方法合理可行,可为高速侵彻体头部形状设计提供参考。
  • 图  1  头部系数与位置的关系

    Figure  1.  Relation between nose shape factor and position

    图  2  改进后的弹体与原弹体对比图

    Figure  2.  The contrast between modified projectile and original projectile

    图  3  φ=3、异型弹体和φ=5弹体的头部形状系数

    Figure  3.  Relation between N* and nose position of φ=3, modified and φ=5 projectiles

    图  4  异型头部弹体尺寸

    Figure  4.  Dimension figure of modified nose

    图  5  φ=3、异型头部和φ=5的弹体示意图

    Figure  5.  Dimension figure of φ=3, modified nose and φ=5 projectiles

    图  6  侵彻体减加速度历史

    Figure  6.  History of projectiles deceleration

    图  7  侵彻体侵深历史

    Figure  7.  History of penetration depth of three projectiles

    图  8  两种弹体在不同速度下的量纲一侵深

    Figure  8.  Non-dimensional penetration depth of OP2 and OP5 at the initial velocities

    图  9  4种头部弹体的量纲一侵深随初速度的变化

    Figure  9.  Non-dimensional penetration depth of OP2, OP5, same sized OP3 and modified nose projectile versus different initial velocity

    表  1  弹体特征参数和侵彻结果

    Table  1.   Characteristic parameters and penetration results of projectiles

    弹体Dp/mmLp/mmN*φmp/kgLc/mmv/(m·s-1)P/mmΔP/mmΔP/Dp
    OP2-140212.920.156 32.001.40698.26431384--
    OP5-140242.930.071 24.551.410110.35419426421.05
    OP2-240212.910.156 32.001.40098.22608686--
    OP5-240242.910.071 24.551.402109.75608738521.30
    OP2-340212.880.156 32.001.39499.13768957--
    OP5-340242.930.071 24.551.408110.057801 019621.55
    下载: 导出CSV
  • [1] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5): 465-476. doi: 10.1016/0734-743X(95)00048-F
    [2] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4): 395-405. doi: 10.1016/0734-743X(94)80024-4
    [3] Jones S E, Rule W K, Jerome D M, et al. On the optimal nose geometry for a rigid penetrator[J]. Computational Mechanics, 1998, 22(5): 413-417. doi: 10.1007/s004660050373
    [4] Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6): 619-637. doi: 10.1016/S0734-743X(02)00005-2
    [5] Zhao J, Chen X W, Jin F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J]. International Journal of Impact Engineering, 2010, 37(9): 971-979. doi: 10.1016/j.ijimpeng.2010.03.008
    [6] Batra R C, Chen X. Effect of frictional force and nose shape on axisymmetric deformation of a thick thermoviscoplastic target[J]. Acta Mechanica, 1994, 106(1/2): 87-105.
    [7] 皮爱国.大长细比动能弹体结构动态响应研究[D].北京: 北京理工大学, 2007.
    [8] Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57(3): 147-159. doi: 10.1088/0959-5309/57/3/301
    [9] Hill R. Cavitation and the influence of headshape in attack of thick targets by non-deforming projectiles[J]. Journal of the Mechanics and Physics of Solids, 1980, 28(5): 249-263.
    [10] Forrestal M J, Luk V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2): 275-279. doi: 10.1115/1.3173672
    [11] Walker J D, Anderson C E. A time-dependent model for long-rod penetration[J]. International Journal of Impact Engineering, 1995, 16(1): 19-48. doi: 10.1016/0734-743X(94)00032-R
    [12] Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2): 95-395.
    [13] 柴传国.异型头部弹体对混凝土靶的侵彻效应研究[D].北京: 北京理工大学, 2014.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3829
  • HTML全文浏览量:  286
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-22
  • 修回日期:  2013-04-01
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回