-
摘要: 为了了解理想刚性弹丸的高速/超高速动能侵彻中弹体头部形状对侵彻能力的影响,在空腔膨胀理论基础上,基于双卵形异型头部设计,分析了头部形状系数与双卵形特征参数的依赖关系,得到了不同异型头部弹体对侵彻性能的影响规律,提出了具有较小侵彻阻力的异型头部侵彻体设计方案。与不同头部侵彻实验结果对比表明,本文的分析方法合理可行,可为高速侵彻体头部形状设计提供参考。Abstract: Nose shape of projectiles is an important factor influencing the penetration ability. For high speed/ultra high speed kinetic energy penetration of ideal rigid projectiles, this factor is becoming more serious. Based on the classical cavity expansion theory and designing scheme of double-ogival nose, this paper analyses the relationship between nose shape factor and the characteristic parameters of double ogive, and obtains the influence of modified nose projectiles on the penetration performance. It puts forward the design scheme of modified nose penetration body with smaller penetration resistance. The comparison among the results of nose penetration test, proves that this analysis and method are reasonable and feasible, and can be used in judgement for the design of high speed penetrator nose shape.
-
表 1 弹体特征参数和侵彻结果
Table 1. Characteristic parameters and penetration results of projectiles
弹体 Dp/mm Lp/mm N* φ mp/kg Lc/mm v/(m·s-1) P/mm ΔP/mm ΔP/Dp OP2-1 40 212.92 0.156 3 2.00 1.406 98.26 431 384 - - OP5-1 40 242.93 0.071 2 4.55 1.410 110.35 419 426 42 1.05 OP2-2 40 212.91 0.156 3 2.00 1.400 98.22 608 686 - - OP5-2 40 242.91 0.071 2 4.55 1.402 109.75 608 738 52 1.30 OP2-3 40 212.88 0.156 3 2.00 1.394 99.13 768 957 - - OP5-3 40 242.93 0.071 2 4.55 1.408 110.05 780 1 019 62 1.55 -
[1] Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5): 465-476. doi: 10.1016/0734-743X(95)00048-F [2] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4): 395-405. doi: 10.1016/0734-743X(94)80024-4 [3] Jones S E, Rule W K, Jerome D M, et al. On the optimal nose geometry for a rigid penetrator[J]. Computational Mechanics, 1998, 22(5): 413-417. doi: 10.1007/s004660050373 [4] Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6): 619-637. doi: 10.1016/S0734-743X(02)00005-2 [5] Zhao J, Chen X W, Jin F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J]. International Journal of Impact Engineering, 2010, 37(9): 971-979. doi: 10.1016/j.ijimpeng.2010.03.008 [6] Batra R C, Chen X. Effect of frictional force and nose shape on axisymmetric deformation of a thick thermoviscoplastic target[J]. Acta Mechanica, 1994, 106(1/2): 87-105. [7] 皮爱国.大长细比动能弹体结构动态响应研究[D].北京: 北京理工大学, 2007. [8] Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57(3): 147-159. doi: 10.1088/0959-5309/57/3/301 [9] Hill R. Cavitation and the influence of headshape in attack of thick targets by non-deforming projectiles[J]. Journal of the Mechanics and Physics of Solids, 1980, 28(5): 249-263. [10] Forrestal M J, Luk V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2): 275-279. doi: 10.1115/1.3173672 [11] Walker J D, Anderson C E. A time-dependent model for long-rod penetration[J]. International Journal of Impact Engineering, 1995, 16(1): 19-48. doi: 10.1016/0734-743X(94)00032-R [12] Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2): 95-395. [13] 柴传国.异型头部弹体对混凝土靶的侵彻效应研究[D].北京: 北京理工大学, 2014.