水下爆炸柱形高压气泡膨胀过程的RGFM和高精度格式数值模拟

史汝超 张亚军 徐胜利

史汝超, 张亚军, 徐胜利. 水下爆炸柱形高压气泡膨胀过程的RGFM和高精度格式数值模拟[J]. 爆炸与冲击, 2014, 34(4): 439-443. doi: 10.11883/1001-1455(2014)04-0439-05
引用本文: 史汝超, 张亚军, 徐胜利. 水下爆炸柱形高压气泡膨胀过程的RGFM和高精度格式数值模拟[J]. 爆炸与冲击, 2014, 34(4): 439-443. doi: 10.11883/1001-1455(2014)04-0439-05
Shi Ru-chao, Zhang Ya-jun, Xu Sheng-li. Simulation of expanding process of high pressure cylindrical bubblesin underwater explosion using RGFM and high accuracy schemes[J]. Explosion And Shock Waves, 2014, 34(4): 439-443. doi: 10.11883/1001-1455(2014)04-0439-05
Citation: Shi Ru-chao, Zhang Ya-jun, Xu Sheng-li. Simulation of expanding process of high pressure cylindrical bubblesin underwater explosion using RGFM and high accuracy schemes[J]. Explosion And Shock Waves, 2014, 34(4): 439-443. doi: 10.11883/1001-1455(2014)04-0439-05

水下爆炸柱形高压气泡膨胀过程的RGFM和高精度格式数值模拟

doi: 10.11883/1001-1455(2014)04-0439-05
基金项目: 国家自然科学基金项目(10902110)
详细信息
    作者简介:

    史汝超(1982—), 男, 博士

  • 中图分类号: O382.1

Simulation of expanding process of high pressure cylindrical bubblesin underwater explosion using RGFM and high accuracy schemes

Funds: Supported bythe National Natural Science Foundation of China (10902110)
More Information
  • 摘要: 为了对柱形装药水下爆炸高压气泡膨胀过程进行三维数值模拟,用level set方法追踪气水界面,详细描述了精确对柱形气泡进行level set建模;对于流场,使用Euler方程描述,并用高精度格式(五阶WENO和四阶R-K法)离散空间项和时间项;对于level set方程,使用五阶HJ-WENO离散;用RGFM处理气水界面附近网格节点。给出了水下流场不同时刻的压力云图、柱形高压气泡的形状演变以及流场中几个指定点的压力峰值。通过三维建模和计算验证,用RGFM结合高精度格式可以很好地对柱形高压气泡膨胀问题进行三维数值模拟,同时也可以较精确地追踪高密度比、高压力比的三维气水界面。计算结果表明,柱形高压气泡在膨胀过程中,形状逐渐向椭球形变化;位于固壁附近的柱形高压气泡受固壁反射波的影响,在固壁法线方向上的膨胀会受到抑制;双圆柱形高压气泡膨胀产生的冲击波,可以彼此抑制对方的膨胀。
  • 图  1  柱形气泡φ初值定义示意图

    Figure  1.  Schematics of defining initial φ of cylindrical bubble

    图  2  RGFM气水界面附近节点赋值示意图

    Figure  2.  Schematics of updating the nodes next to interface using RGFM

    图  3  高压气泡初始位置示意图

    Figure  3.  Schematics of initial location of high pressure bubble

    图  4  算例1流场压力云图

    Figure  4.  Pressure cloud pictures of flow field of case 1

    图  5  算例2流场压力云图

    Figure  5.  Pressure cloud pictures of flow field of case 2

    图  6  算例2的计算结果

    Figure  6.  The calculation results of case 2

  • [1] Plesset M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(16): 277-282. http://ci.nii.ac.jp/naid/10010262461
    [2] Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111: 123-140. doi: 10.1017/S0022112081002322
    [3] Pearson A, Cox E, Blake J R, et al. Bubble interactions near a free surface[J]. Engineering Analysis with Boundary Elements, 2004, 28(4): 295-313. doi: 10.1016/S0955-7997(03)00079-1
    [4] Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading[R]. Dartmouth, Nova Scotia: Defence Research Estabishment, 1986.
    [5] Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater[J]. Journal of Fluids and Structures, 2005, 20(3): 359-372. doi: 10.1016/j.jfluidstructs.2004.08.003
    [6] Russo G, Smereka P. A remark on computing distance functions[J]. Journal of Computational Physics, 2000, 163(1): 51-67. doi: 10.1006/jcph.2000.6553
    [7] Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. SIAM Journal on Scientific Computing, 2006, 28(1): 278-232. doi: 10.1137/030601363
    [8] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2
    [9] Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159. doi: 10.1006/jcph.1994.1155
    [10] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681. doi: 10.1016/S0021-9991(03)00301-2
    [11] Aslam T. A partial differential equation approach to multidimensional extrapolation[J]. Journal of Computational Physics, 2004, 193(1): 349-355. doi: 10.1016/j.jcp.2003.08.001
    [12] Wardlaw Jr A B. Underwater explosion test cases[R]. Indian Head Division: Naval Surface Warfare Center, 1998.
    [13] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[C]//Advanced numerical approximation of nonlinear hyperbolic equations. Springer, 1997: 325-432.
    [14] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5
    [15] Jiang G S, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations[J]. SIAM Journal on Scientific Computing, 2000, 21(6): 2126-2143. doi: 10.1137/S106482759732455X
  • 加载中
图(6)
计量
  • 文章访问数:  4697
  • HTML全文浏览量:  337
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-10
  • 修回日期:  2013-04-07
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回