Simulation of expanding process of high pressure cylindrical bubblesin underwater explosion using RGFM and high accuracy schemes
-
摘要: 为了对柱形装药水下爆炸高压气泡膨胀过程进行三维数值模拟,用level set方法追踪气水界面,详细描述了精确对柱形气泡进行level set建模;对于流场,使用Euler方程描述,并用高精度格式(五阶WENO和四阶R-K法)离散空间项和时间项;对于level set方程,使用五阶HJ-WENO离散;用RGFM处理气水界面附近网格节点。给出了水下流场不同时刻的压力云图、柱形高压气泡的形状演变以及流场中几个指定点的压力峰值。通过三维建模和计算验证,用RGFM结合高精度格式可以很好地对柱形高压气泡膨胀问题进行三维数值模拟,同时也可以较精确地追踪高密度比、高压力比的三维气水界面。计算结果表明,柱形高压气泡在膨胀过程中,形状逐渐向椭球形变化;位于固壁附近的柱形高压气泡受固壁反射波的影响,在固壁法线方向上的膨胀会受到抑制;双圆柱形高压气泡膨胀产生的冲击波,可以彼此抑制对方的膨胀。Abstract: This paper presents a 3D numerical simulation of expanding process of high pressure cylindrical bubbles in underwater explosion. Level set method was used to track gas-water interface. The detail on precise definition of initial level set values of cylindrical bubble was also provided. The flow field was solved by Euler equation with fifth-order WENO spatial discretization and fourth-order R-K (Runge-Kutta) time discretization. HJ-WENO was employed to discretized level set equation. The flow states at grid nodes just next to gas-water interface were updated by RGFM algorithm. Pressure cloud pictures at different times, the shape changes of high pressure bubbles and pressure peak at given points were offered. Some interesting conclusions are concluded, as that high pressure cylindrical bubble becomes ellipsoidal gradually during expanding process, the expansion of bubbles nearby the wall is restricted in the normal by reflected wave, and expansion of double cylindrical bubbles is restricted by shock wave from each other. The numerical results also show excellent performance of RGFM and high accuracy scheme when applied to simulation of high pressure cylindrical bubbles expanding.
-
[1] Plesset M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(16): 277-282. http://ci.nii.ac.jp/naid/10010262461 [2] Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111: 123-140. doi: 10.1017/S0022112081002322 [3] Pearson A, Cox E, Blake J R, et al. Bubble interactions near a free surface[J]. Engineering Analysis with Boundary Elements, 2004, 28(4): 295-313. doi: 10.1016/S0955-7997(03)00079-1 [4] Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading[R]. Dartmouth, Nova Scotia: Defence Research Estabishment, 1986. [5] Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater[J]. Journal of Fluids and Structures, 2005, 20(3): 359-372. doi: 10.1016/j.jfluidstructs.2004.08.003 [6] Russo G, Smereka P. A remark on computing distance functions[J]. Journal of Computational Physics, 2000, 163(1): 51-67. doi: 10.1006/jcph.2000.6553 [7] Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. SIAM Journal on Scientific Computing, 2006, 28(1): 278-232. doi: 10.1137/030601363 [8] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2 [9] Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159. doi: 10.1006/jcph.1994.1155 [10] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681. doi: 10.1016/S0021-9991(03)00301-2 [11] Aslam T. A partial differential equation approach to multidimensional extrapolation[J]. Journal of Computational Physics, 2004, 193(1): 349-355. doi: 10.1016/j.jcp.2003.08.001 [12] Wardlaw Jr A B. Underwater explosion test cases[R]. Indian Head Division: Naval Surface Warfare Center, 1998. [13] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[C]//Advanced numerical approximation of nonlinear hyperbolic equations. Springer, 1997: 325-432. [14] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5 [15] Jiang G S, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations[J]. SIAM Journal on Scientific Computing, 2000, 21(6): 2126-2143. doi: 10.1137/S106482759732455X 期刊类型引用(1)
1. 梁志国. 大数据时代计量校准理论与技术的发展展望. 计测技术. 2015(06): 6-9+28 .
百度学术其他类型引用(3)
-
推荐阅读
钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测
汤长兴 等, 爆炸与冲击, 2025
舱室内爆下舰船结构损伤的一种计算方法
伍星星 等, 爆炸与冲击, 2024
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
基于自由场爆炸的猪鼓膜破裂规律实验研究
向书毅 等, 爆炸与冲击, 2024
基于piv实验研究带破口双层圆柱结构附近气泡的动力学特性
孙远翔 等, 高压物理学报, 2024
面向爆轰冲击的分离式流固耦合数值模拟
张森 等, 空气动力学学报, 2022
基于格子玻尔兹曼方法的横向交变质量力对核沸腾影响的数值分析
陈启明 等, 能源研究与信息, 2024
Chitosan: properties and its application in agriculture in context of molecular weight
Roman-Doval, Ramon et al., POLYMERS, 2023
Ultra-broadband sound absorption characteristics in underwater ultra-thin metamaterial with three layer bubbles
ENGINEERING REPORTS, 2024
The wave slamming dynamic characteristics of the installation of subsea manifold during splash zone considering air cushion effect
OCEAN ENGINEERING, 2025



下载:
百度学术