Experimental study on dynamic behavior ofthin circular plate of TiNi alloysubjected to transversal impact
-
摘要: 利用改装的霍普金森压杆装置对周边固支伪弹性TiNi合金圆薄板进行了冲击实验,初步得到了该结构在时空2个尺度上的动态力学响应的演变发展现象和规律,包括板中弯曲波的传播、相变区的演化和全场的离面位移等,并和A3钢做了对比。结果表明,由于圆板的二维扩散效应,冲击过程中仅在TiNi板中心很小区域(约5 mm)内形成相变区和相变铰,卸载后相变铰消失,钢试件则留下明显的残余变形。TiNi合金圆板的冲击特性受热弹性马氏体相变和逆相变的支配,不同于传统的弹塑性机制。Abstract: The experimental investigation of thin circular plate of pseudo-elastic TiNi alloy under fixed supports and transversal impact loading was conducted using a revised apparatus of Hopkinson bar. The experimental result of pseudo-elastic TiNi alloy was compared with that of A3 steel. The nature of dynamic mechanical response of the structure in spatio-temporal scale, including the propagation of flexural wave in the plate, evolution of transformation zones and full-field out-of-plane displacement were derived. The results show that transformation zones and transformation hinge may generate near the center of the plate (about 5 mm) because of two-dimensional diffusion effect of the circular plate under impact loading. After unloading, the transformation hinge disappeared, and obvious residual deformation was observed in the A3 steel plate. The impact response of thin circular plate of TiNi alloy is controlled by the thermo-elastic martensite phase transformation and inverse transformation, which differs from the conventional elastic-plastic mechanism.
-
表 1 主要实验结果
Table 1. Experimental results
实验 试件 材料 l/mm v1/(m·s-1) v2/(m·s-1) wm/mm wre/mm ed/J 1 1 TiNi 200 4.74 3.56 3.01 - 1.162 2 2 TiNi 200 5.33 4.23 3.98 - 1.247 3 2 TiNi 100 6.52 4.30 2.36 - 1.408 4 3 TiNi 100 6.78 3.91 2.51 - 1.799 5 4 A3 200 4.74 2.70 2.24 0.47 1.801 6 5 A3 100 8.64 5.45 2.53 0.49 2.635 -
[1] Paine J S N, Rogers C A. The response of SMA hybrid composite materials to low velocity impact[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(4): 530-535. doi: 10.1177/1045389X9400500409 [2] Birman V, Chandrashekhara K, Sain S. An approach to optimization of shape memory alloy hybrid compositeplates subjected to low velocity impact[J]. Composites Part B: Engineering, 1996, 27(5): 439-446. doi: 10.1016/1359-8368(96)00010-8 [3] 唐志平, 卢艰春, 张兴华. TiNi相变悬臂梁的横向冲击特性实验研究[J].爆炸与冲击, 2007, 27(4): 289-295. doi: 10.3321/j.issn:1001-1455.2007.04.001Tang Zhi-ping, Lu Jian-chun, Zhang Xing-hua. Experimental study of the dynamic behavior of TiNi cantilever bears with phase transformation subjected to transversal impact[J]. Explosion and Shock Waves, 2007, 27(4): 289-295. doi: 10.3321/j.issn:1001-1455.2007.04.001 [4] 张兴华, 唐志平, 李丹, 等.横向冲击载荷下伪弹性TiNi合金举行悬臂梁结构响应的实验研究[J].实验力学, 2008, 23(1): 44-52.Zhang Xing-hua, Tang Zhi-ping, Li Dan, et al. Experimental study of the dynamic structural response of pseudo-elastic TiNi alloy rectangular cantilever beam upon a transversal impact[J]. Journal of Experimental Mechanics, 2008, 23(1): 44-52. [5] Zhang Xing-hua, Tang Zhi-ping. Experimental study on the dynamic behavior of TiNi cantilever beams with rectangular cross-section under transversal impact[J]. International Journal of Impact Engineering, 2010, 37(7): 813-827. doi: 10.1016/j.ijimpeng.2010.01.001 [6] 吴会民, 汪玉, 唐志平.落锤冲击下伪弹性TiNi合金固支梁的响应特性研究[J].振动与冲击, 2009, 28(3): 40-45. doi: 10.3969/j.issn.1000-3835.2009.03.010Wu Hui-min, Wang Yu, Tang Zhi-ping. Response of a TiNi end-clamped beam under dropping hammer shock[J]. Journal of Vibration and Shock, 2009, 28(3): 40-45. doi: 10.3969/j.issn.1000-3835.2009.03.010 [7] 黄赫, 唐志平.子弹冲击下TiNi固支梁的结构动态响应特性研究[J].实验力学, 2012, 27(1): 93-101.Huang He, Tang Zhi-ping. Investigation on structural dynamic response of a TiNi end clamped beam under transversal impact[J]. Journal of Experimental Mechanics, 2012, 27(1): 93-101. [8] Tang Zhi-ping, Li Dan. Experimental investigation of axial impact buckling response of pseudo-elastic NiTi cylindrical shells[J]. International Journal of Impact Engineering, 2012, 39: 28-41. doi: 10.1016/j.ijimpeng.2011.09.005 [9] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic pates[J]. Journal of Applied Mechanics, 1951, 18: 31-38. https://ci.nii.ac.jp/naid/10019504164 [10] Auricchio F, Taylor R L. Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior[J]. Computer Methods in Applied Mechanics and Engineering, 1997: 143(1/2): 175-194. [11] Auricchio F, Taylor R L, Lubliner J. Shape-memory alloys: Macro modeling and numerical simulations of the super-elastic behavior[J]. Computational Methods in Applied Mechanical Engineering, 1997, 146: 281-312. doi: 10.1016/S0045-7825(96)01232-7