-
摘要: 运用有限元软件ABAQUS/Explicit模拟了三维Voronoi闭孔泡沫金属在不同的冲击速度下的变形行为。随着冲击速度的提高,得到了3种变形模式:准静态均匀模式、过渡模式和冲击模式,并以相对密度和冲击速度为坐标建立了变形模式图。引入应力均匀性指标和变形局部化指标,确定了模式转化的临界速度,并与已有的冲击速度预测公式进行了比较。根据临界速度的数值和理论结果,提出了一种确定锁定应变的方案,结果介于压实应变和完全密实应变之间。Abstract: Deformation behavior of closed-cell metallic foam under uniaxial dynamic compression was investigated using the finite element method of ABAQUS/Explicit code. The random 3D Voronoi technique was employed to construct foam specimens. Three deformation modes, namely the quasi-static homogeneous mode, the transitional mode and the shock mode, had been observed in the foam specimens with increasing of impact velocity. A deformation mode map with coordinates of relative density and impact velocity was presented for the foam considered. Two parameters, namely the stress uniformity index and the deformation localization index, were introduced to identify two critical impact velocities of mode transitions. The numerical results of critical impact velocities were compared with the predictions using the theoretical formulas from the literature. Based on the numerical and theoretical results of critical impact velocities, a scheme is suggested to determine the locking strain. It is found that the locking strain obtained from this scheme is between the densification strain and the complete densification strain.
-
Key words:
- solid mechanics /
- deformation mode /
- finite element method /
- Voronoi model /
- critical velocity /
- locking strain
-
表 1 屈服应变和应力、压实应变和应力、平台应力
Table 1. The yield strain and stress, densification strain and stress, and plateau stress
ρ εy σy/MPa εD σD/MPa σpl/MPa 0.05 0.005 2.6±0.03 0.620±0.021 3.1±0.2 2.79±0.03 0.10 0.005 5.5±0.10 0.624±0.017 9.1±0.4 7.30±0.10 0.15 0.010 11.2±0.10 0.620±0.010 16.3±0.5 12.90±0.20 0.20 0.020 16.2±0.20 0.610±0.012 23.8±0.8 19.10±0.20 -
[1] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8 [2] Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2D cellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(4): 650-664. https://www.sciencedirect.com/science/article/pii/S0734743X05000795 [3] Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22): 3988-3998. [4] Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36(6): 775-782. doi: 10.1016/j.ijimpeng.2008.11.013 [5] 刘颖, 张新春.缺陷分布不均匀性对蜂窝材料面内冲击性能的影响[J].爆炸与冲击, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003Liu Ying, Zhang Xin-chun. Effects of inhomogeneous distribution of defects on in-plane dynamic properties of honeycombs[J]. Explosion and Shock Waves, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003 [6] 胡玲玲, 尤帆帆.铝蜂窝的动态力学性能及影响因素[J].爆炸与冲击, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004Hu Ling-ling, You Fang-fang. Dynamic mechanical honeycomb and properties of aluminum its effect factors[J]. Explosion and Shock Waves, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004 [7] Meguid S A, Cheon S S, El-Abbasi N. FE modelling of deformation localization in metallic foams[J]. Finite Elements in Analysis and Design, 2002, 38(7): 631-643. doi: 10.1016/S0168-874X(01)00096-8 [8] 宋延泽, 李志强, 赵隆茂.基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析[J].爆炸与冲击, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010Song Yan-ze, Li Zhi-qiang, Zhao Long-mao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model[J]. Explosion and Shock Waves, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010 [9] Song Y Z, Wang Z H, Zhao L M, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model[J]. Materials and Design, 2010, 31(9): 4281-4289. doi: 10.1016/j.matdes.2010.04.007 [10] 王鹏飞, 徐松林, 郑航, 等.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014Wang Peng-fei, Xu Song-lin, Zheng Hang, et al. Influence of deformation modes on SHPB experimental results of cellular metal[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014 [11] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007 [12] Yu J L, Zheng Z J. Dynamic crushing of 2D cellular metals: Microstructure effects and rate-sensitivity mechanisms[J]. Acta Mechanica Sinica, 2010, 23(suppl): 45-55. [13] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0 [14] Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb: Crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696. doi: 10.1016/S0020-7403(02)00060-7 [15] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: 'Shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. doi: 10.1016/j.jmps.2005.05.003 [16] Zheng Z J, Liu Y D, Yu J L, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes[J]. International Journal of Impact Engineering, 2012, 42: 66-79. doi: 10.1016/j.ijimpeng.2011.09.009