闭孔泡沫金属变形模式的有限元分析

李妍妍 郑志军 虞吉林 王长峰

李妍妍, 郑志军, 虞吉林, 王长峰. 闭孔泡沫金属变形模式的有限元分析[J]. 爆炸与冲击, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07
引用本文: 李妍妍, 郑志军, 虞吉林, 王长峰. 闭孔泡沫金属变形模式的有限元分析[J]. 爆炸与冲击, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07
Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07
Citation: Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07

闭孔泡沫金属变形模式的有限元分析

doi: 10.11883/1001-1455(2014)04-0464-07
基金项目: 国家自然科学基金项目(11002140, 90916026)
详细信息
    作者简介:

    李妍妍(1989—), 女, 硕士研究生

  • 中图分类号: O347.1

Finite element analysis on deformation modes of closed-cell metallic foam

Funds: Supported bythe National Natural Science Foundation of China (11002140, 90916026)
More Information
  • 摘要: 运用有限元软件ABAQUS/Explicit模拟了三维Voronoi闭孔泡沫金属在不同的冲击速度下的变形行为。随着冲击速度的提高,得到了3种变形模式:准静态均匀模式、过渡模式和冲击模式,并以相对密度和冲击速度为坐标建立了变形模式图。引入应力均匀性指标和变形局部化指标,确定了模式转化的临界速度,并与已有的冲击速度预测公式进行了比较。根据临界速度的数值和理论结果,提出了一种确定锁定应变的方案,结果介于压实应变和完全密实应变之间。
  • 图  1  三维随机Voronoi模型

    Figure  1.  A random 3D Voronoi model

    图  2  准静态应力-应变曲线

    Figure  2.  Quasi-static compression strain-stress curves

    图  3  变形模式

    Figure  3.  Deformation modes

    图  4  冲击端和支撑端的名义应力-应变曲线

    Figure  4.  Nominal strain-stress curves at the impact and support ends

    图  5  应力均匀性指标随冲击速度的变化

    Figure  5.  Stress uniformity index versus impact velocity

    图  6  Rε的关系曲线

    Figure  6.  Curves of R varying with ε

    图  7  变形局部化指标随冲击速度的变化

    Figure  7.  Deformation localization index versus impact velocity

    图  8  变形模式图

    Figure  8.  Deformation mode map

    图  9  锁定应变、压实应变和完全密实应变

    Figure  9.  Locking strain, densification strain and full densification strain

    表  1  屈服应变和应力、压实应变和应力、平台应力

    Table  1.   The yield strain and stress, densification strain and stress, and plateau stress

    ρεyσy/MPaεDσD/MPaσpl/MPa
    0.050.0052.6±0.030.620±0.0213.1±0.22.79±0.03
    0.100.0055.5±0.100.624±0.0179.1±0.47.30±0.10
    0.150.01011.2±0.100.620±0.01016.3±0.512.90±0.20
    0.200.02016.2±0.200.610±0.01223.8±0.819.10±0.20
    下载: 导出CSV
  • [1] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs: A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. doi: 10.1016/S0734-743X(02)00056-8
    [2] Zheng Z J, Yu J L, Li J R. Dynamic crushing of 2D cellular structures: A finite element study[J]. International Journal of Impact Engineering, 2005, 32(4): 650-664. https://www.sciencedirect.com/science/article/pii/S0734743X05000795
    [3] Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22): 3988-3998.
    [4] Ma G W, Ye Z Q, Shao Z S. Modeling loading rate effect on crushing stress of metallic cellular materials[J]. International Journal of Impact Engineering, 2009, 36(6): 775-782. doi: 10.1016/j.ijimpeng.2008.11.013
    [5] 刘颖, 张新春.缺陷分布不均匀性对蜂窝材料面内冲击性能的影响[J].爆炸与冲击, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003

    Liu Ying, Zhang Xin-chun. Effects of inhomogeneous distribution of defects on in-plane dynamic properties of honeycombs[J]. Explosion and Shock Waves, 2009, 29(3): 237-242. doi: 10.3321/j.issn:1001-1455.2009.03.003
    [6] 胡玲玲, 尤帆帆.铝蜂窝的动态力学性能及影响因素[J].爆炸与冲击, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004

    Hu Ling-ling, You Fang-fang. Dynamic mechanical honeycomb and properties of aluminum its effect factors[J]. Explosion and Shock Waves, 2012, 32(1): 23-28. doi: 10.3969/j.issn.1001-1455.2012.01.004
    [7] Meguid S A, Cheon S S, El-Abbasi N. FE modelling of deformation localization in metallic foams[J]. Finite Elements in Analysis and Design, 2002, 38(7): 631-643. doi: 10.1016/S0168-874X(01)00096-8
    [8] 宋延泽, 李志强, 赵隆茂.基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析[J].爆炸与冲击, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010

    Song Yan-ze, Li Zhi-qiang, Zhao Long-mao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model[J]. Explosion and Shock Waves, 2009, 29(1): 49-55. doi: 10.3321/j.issn:1001-1455.2009.01.010
    [9] Song Y Z, Wang Z H, Zhao L M, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model[J]. Materials and Design, 2010, 31(9): 4281-4289. doi: 10.1016/j.matdes.2010.04.007
    [10] 王鹏飞, 徐松林, 郑航, 等.变形模式对多孔金属材料SHPB实验结果的影响[J].力学学报, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014

    Wang Peng-fei, Xu Song-lin, Zheng Hang, et al. Influence of deformation modes on SHPB experimental results of cellular metal[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. http://d.wanfangdata.com.cn/Periodical/lxxb201205014
    [11] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205. doi: 10.1016/j.jmps.2005.05.007
    [12] Yu J L, Zheng Z J. Dynamic crushing of 2D cellular metals: Microstructure effects and rate-sensitivity mechanisms[J]. Acta Mechanica Sinica, 2010, 23(suppl): 45-55.
    [13] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. doi: 10.1016/S0734-743X(99)00153-0
    [14] Hönig A, Stronge W J. In-plane dynamic crushing of honeycomb: Crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696. doi: 10.1016/S0020-7403(02)00060-7
    [15] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminium foams: 'Shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. doi: 10.1016/j.jmps.2005.05.003
    [16] Zheng Z J, Liu Y D, Yu J L, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes[J]. International Journal of Impact Engineering, 2012, 42: 66-79. doi: 10.1016/j.ijimpeng.2011.09.009
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3887
  • HTML全文浏览量:  314
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-14
  • 修回日期:  2013-03-21
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回