一种基于SHPB的冲击膨胀环实验技术

郑宇轩 周风华 胡时胜

郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术[J]. 爆炸与冲击, 2014, 34(4): 483-488. doi: 10.11883/1001-1455(2014)04-0483-06
引用本文: 郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术[J]. 爆炸与冲击, 2014, 34(4): 483-488. doi: 10.11883/1001-1455(2014)04-0483-06
Zheng Yu-xuan, Zhou Feng-hua, Hu Shi-sheng. An SHPB-based experimental technique for dynamic fragmentations of expanding rings[J]. Explosion And Shock Waves, 2014, 34(4): 483-488. doi: 10.11883/1001-1455(2014)04-0483-06
Citation: Zheng Yu-xuan, Zhou Feng-hua, Hu Shi-sheng. An SHPB-based experimental technique for dynamic fragmentations of expanding rings[J]. Explosion And Shock Waves, 2014, 34(4): 483-488. doi: 10.11883/1001-1455(2014)04-0483-06

一种基于SHPB的冲击膨胀环实验技术

doi: 10.11883/1001-1455(2014)04-0483-06
基金项目: 国家自然科学基金项目(10972108)
详细信息
    作者简介:

    郑宇轩(1986—), 男, 博士研究生

  • 中图分类号: O346.1

An SHPB-based experimental technique for dynamic fragmentations of expanding rings

Funds: Supported bythe National Natural Science Foundation of China (10972108)
More Information
  • 摘要: 设计了一种基于分离式Hopkinson压杆(SHPB)的冲击膨胀环实验装置,实验装置包括一个液压腔,一侧为驱动活塞,另一侧为圆环试件封闭。对活塞施加轴向冲击,利用液体体积近似不可压缩的特性,通过液压腔截面积的大比例缩小,将较低速度的对活塞冲击转化为圆环试件沿径向的高速膨胀,驱动试件发生拉伸变形直至断(碎)裂。使用这种冲击膨胀装置,获得了LY12铝环在不同撞击速度下碎裂过程的初步结果。实验结果显示,随着撞击速度增大,圆环试件碎裂产生的碎片的尺度减小,试件的表观断裂应变增加。这为研究材料的动态拉伸碎裂问题提供了一种加载方式。
  • 图  1  冲击膨胀环加载装置

    Figure  1.  Equipment for loading expanding rings

    图  2  有限元模拟示意图

    Figure  2.  Schematic of FEM simulation

    图  3  安装在SHPB系统上的冲击膨胀环实验装置示意图

    Figure  3.  Schematic diagram of the impact loading fixture installed between SHPB

    图  4  实验回收的铝合金环碎片

    Figure  4.  Recovered aluminum ally fragments after testing

    图  5  碎片断裂形貌分析

    Figure  5.  Form of the fragments after testing

    图  6  平均碎片尺寸随撞击速度的变化规律

    Figure  6.  Average fragment size under different impact velocity

    图  7  平均断裂应变随撞击速度的变化规律

    Figure  7.  Average fracture strain under different impact velocity

    表  1  铝合金环动态拉伸实验数据

    Table  1.   Data obtained from the dynamic tensile experiment of auminium alloy

    实验v0/(m·s-1)nl/mm
    110.8257.0
    211.0256.8
    310.9460.8
    414.1462.6
    516.1459.0
    616.8362.9
    721.5668.0
    822.1564.9
    921.7666.8
    1025.2771.7
    1125.7871.1
    1225.5862.4
    1331.6772.4
    1435.1878.9
    下载: 导出CSV
  • [1] Johnson P C, Stein B A, Davh R S. Measurement of dynamic plastic flow properties under uniform stress[C]//Symposium on the Dynamic Behavior of Materials, 1963.
    [2] Hoggatt C R, Recht R F. Stress-strain data obtained at high rates using en expanding ring[J]. Experimental Mechanics, 1969, 9(10): 441-448. doi: 10.1007/BF02410405
    [3] 汤铁钢, 李庆忠, 陈永涛, 等.实现材料高应变率拉伸加载的爆炸膨胀环技术[J].爆炸与冲击, 2009, 29(5): 546-549. doi: 10.3321/j.issn:1001-1455.2009.05.017

    Tang Tie-gang, Li Qing-zhong, Chen Yong-tao, et al. An improved technique for dynamic tension of metal ring by explosive loading[J]. Explosion and Shock Waves, 2009, 29(5): 546-549. doi: 10.3321/j.issn:1001-1455.2009.05.017
    [4] Niordson F I. A unit for testing materials at high strain rates[J]. Experimental Mechanics, 1965, 5(1): 29-32. doi: 10.1007/BF02320901
    [5] Walling H C, Forrestal M J. Elastic-plastic expansion of 6061-T6 aluminum rings[J]. AIAA Journal, 1973, 11(8): 1196-1197. doi: 10.2514/3.6894
    [6] Grady D E, Benson D A. Fragmentation of metal rings by electromagnetic loading[J]. Experimental Mechanics, 1983, 23(4): 393-400. doi: 10.1007/BF02330054
    [7] Grady D E, Olsen M L. A statistics and energy based theory of dynamic fragmentation[J]. International Journal of Impact Engineering, 2003, 29(1): 293-306. http://www.sciencedirect.com/science/article/pii/S0734743X03001325
    [8] Gourdin W H. Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test[J]. Journal Applied Physics, 1989, 65: 411-422. doi: 10.1063/1.343121
    [9] 桂毓林, 孙承纬, 李强, 等.实现金属环动态拉伸的电磁加载技术研究[J].爆炸与冲击, 2006, 26(6): 481-485. doi: 10.3321/j.issn:1001-1455.2006.06.001

    Gui Yu-lin, Sun Cheng-wei, Li Qiang, et al. Experimental studies on dynamic tension of metal ring by electrmagnetic loading[J]. Explosion and Shock Waves, 2006, 26(6): 481-485. doi: 10.3321/j.issn:1001-1455.2006.06.001
    [10] Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation: Ⅰ: Real-time and post-mortem observations in Al 6061-O[J]. International Journal of Fracture, 2006, 142(3/4): 183-217. doi: 10.1007/s10704-006-9024-7
    [11] Zhang H, Liechti K M, Ravi-Chandar K. On the dynamics of localization and fragmentation: Ⅲ: Effect of cladding with a polymer[J]. International Journal of Fracture, 2009, 155(2): 101-118. doi: 10.1007/s10704-009-9332-9
    [12] 陈磊, 周风华, 汤铁钢.韧性金属圆环高速膨胀碎裂过程的有限元模拟[J].力学学报, 2011, 43(5): 861-870. http://qikan.cqvip.com/Qikan/Article/Detail?id=39379920

    Chen Lei, Zhou Feng-hua, Tang Tie-gang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Acta Mechanica Sinica, 2011, 43(5): 861-870. http://qikan.cqvip.com/Qikan/Article/Detail?id=39379920
    [13] 郑宇轩, 周风华, 胡时胜.周期分布缺陷对韧性材料高应变率拉伸碎裂过程的影响[J].爆炸与冲击, 2013, 33(2): 113-119. doi: 10.3969/j.issn.1001-1455.2013.02.001

    Zheng Yu-xuan, Zhou Feng-hua, Hu Shi-sheng. Effect of periodically distributed defects on the ductile fragmentation process of materials under high strain-rate tension[J]. Explosion and Shock Waves, 2013, 33(2): 113-119. doi: 10.3969/j.issn.1001-1455.2013.02.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3129
  • HTML全文浏览量:  383
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-24
  • 修回日期:  2013-01-22
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回