-
摘要: 设计了一种基于分离式Hopkinson压杆(SHPB)的冲击膨胀环实验装置,实验装置包括一个液压腔,一侧为驱动活塞,另一侧为圆环试件封闭。对活塞施加轴向冲击,利用液体体积近似不可压缩的特性,通过液压腔截面积的大比例缩小,将较低速度的对活塞冲击转化为圆环试件沿径向的高速膨胀,驱动试件发生拉伸变形直至断(碎)裂。使用这种冲击膨胀装置,获得了LY12铝环在不同撞击速度下碎裂过程的初步结果。实验结果显示,随着撞击速度增大,圆环试件碎裂产生的碎片的尺度减小,试件的表观断裂应变增加。这为研究材料的动态拉伸碎裂问题提供了一种加载方式。Abstract: Based on the split Hopkinson pressure bar (SHPB), a new loading experimental technology was developed for conducting expanding ring test which is used to study the dynamic tensile deformation and the fracture (fragmentation) properties of materials. The loading fixture includes a hydraulic cylinder filled with incompressible fluid, which is pushed by a piston connected to the input bar. As the liquid is driven, it expands the metallic ring specimen in the radial direction. The approximately incompressible property of the liquid makes it possible to drive the specimen in very high radial velocity by low velocity movement of piston, according to the large sectional area ratio of the cylinder to specimen. The ring specimens of LY12 aluminum alloy were tested by this experimental technology. The results show apparent increase of the fragment number and the fracture strain of the specimen with the increase of the impact velocity.
-
Key words:
- solid mechanics /
- expanding ring /
- SHPB /
- dynamic tension /
- fragmentation /
- apparent fracture strain
-
表 1 铝合金环动态拉伸实验数据
Table 1. Data obtained from the dynamic tensile experiment of auminium alloy
实验 v0/(m·s-1) n l/mm 1 10.8 2 57.0 2 11.0 2 56.8 3 10.9 4 60.8 4 14.1 4 62.6 5 16.1 4 59.0 6 16.8 3 62.9 7 21.5 6 68.0 8 22.1 5 64.9 9 21.7 6 66.8 10 25.2 7 71.7 11 25.7 8 71.1 12 25.5 8 62.4 13 31.6 7 72.4 14 35.1 8 78.9 -
[1] Johnson P C, Stein B A, Davh R S. Measurement of dynamic plastic flow properties under uniform stress[C]//Symposium on the Dynamic Behavior of Materials, 1963. [2] Hoggatt C R, Recht R F. Stress-strain data obtained at high rates using en expanding ring[J]. Experimental Mechanics, 1969, 9(10): 441-448. doi: 10.1007/BF02410405 [3] 汤铁钢, 李庆忠, 陈永涛, 等.实现材料高应变率拉伸加载的爆炸膨胀环技术[J].爆炸与冲击, 2009, 29(5): 546-549. doi: 10.3321/j.issn:1001-1455.2009.05.017Tang Tie-gang, Li Qing-zhong, Chen Yong-tao, et al. An improved technique for dynamic tension of metal ring by explosive loading[J]. Explosion and Shock Waves, 2009, 29(5): 546-549. doi: 10.3321/j.issn:1001-1455.2009.05.017 [4] Niordson F I. A unit for testing materials at high strain rates[J]. Experimental Mechanics, 1965, 5(1): 29-32. doi: 10.1007/BF02320901 [5] Walling H C, Forrestal M J. Elastic-plastic expansion of 6061-T6 aluminum rings[J]. AIAA Journal, 1973, 11(8): 1196-1197. doi: 10.2514/3.6894 [6] Grady D E, Benson D A. Fragmentation of metal rings by electromagnetic loading[J]. Experimental Mechanics, 1983, 23(4): 393-400. doi: 10.1007/BF02330054 [7] Grady D E, Olsen M L. A statistics and energy based theory of dynamic fragmentation[J]. International Journal of Impact Engineering, 2003, 29(1): 293-306. http://www.sciencedirect.com/science/article/pii/S0734743X03001325 [8] Gourdin W H. Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test[J]. Journal Applied Physics, 1989, 65: 411-422. doi: 10.1063/1.343121 [9] 桂毓林, 孙承纬, 李强, 等.实现金属环动态拉伸的电磁加载技术研究[J].爆炸与冲击, 2006, 26(6): 481-485. doi: 10.3321/j.issn:1001-1455.2006.06.001Gui Yu-lin, Sun Cheng-wei, Li Qiang, et al. Experimental studies on dynamic tension of metal ring by electrmagnetic loading[J]. Explosion and Shock Waves, 2006, 26(6): 481-485. doi: 10.3321/j.issn:1001-1455.2006.06.001 [10] Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation: Ⅰ: Real-time and post-mortem observations in Al 6061-O[J]. International Journal of Fracture, 2006, 142(3/4): 183-217. doi: 10.1007/s10704-006-9024-7 [11] Zhang H, Liechti K M, Ravi-Chandar K. On the dynamics of localization and fragmentation: Ⅲ: Effect of cladding with a polymer[J]. International Journal of Fracture, 2009, 155(2): 101-118. doi: 10.1007/s10704-009-9332-9 [12] 陈磊, 周风华, 汤铁钢.韧性金属圆环高速膨胀碎裂过程的有限元模拟[J].力学学报, 2011, 43(5): 861-870. http://qikan.cqvip.com/Qikan/Article/Detail?id=39379920Chen Lei, Zhou Feng-hua, Tang Tie-gang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Acta Mechanica Sinica, 2011, 43(5): 861-870. http://qikan.cqvip.com/Qikan/Article/Detail?id=39379920 [13] 郑宇轩, 周风华, 胡时胜.周期分布缺陷对韧性材料高应变率拉伸碎裂过程的影响[J].爆炸与冲击, 2013, 33(2): 113-119. doi: 10.3969/j.issn.1001-1455.2013.02.001Zheng Yu-xuan, Zhou Feng-hua, Hu Shi-sheng. Effect of periodically distributed defects on the ductile fragmentation process of materials under high strain-rate tension[J]. Explosion and Shock Waves, 2013, 33(2): 113-119. doi: 10.3969/j.issn.1001-1455.2013.02.001 期刊类型引用(14)
1. 刘宗兴,张春阳,曹苗,陈斐颖,刘军,李玉龙. 电磁加载膨胀环试验技术的发展及应用. 力学进展. 2024(04): 639-668 . 百度学术
2. 李嘉皓,徐便,郑宇轩,周风华. 液压膨胀环恒应变率加载技术. 爆炸与冲击. 2023(02): 121-129 . 本站查看
3. 刘明涛,汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题. 爆炸与冲击. 2021(01): 14-25 . 本站查看
4. 汤佳妮,徐便,郑宇轩,周风华. 脆性膨胀环动态拉伸碎裂实验研究. 爆炸与冲击. 2021(01): 96-104 . 本站查看
5. 任会兰,赵翰卿,李尉,宁建国. 基于离散元法分析增韧陶瓷圆环的动态膨胀碎裂. 兵工学报. 2021(03): 607-616 . 百度学术
6. 卢思凡,张佳,王珠,汤佳妮,郑宇轩,周风华. 液压膨胀环动态拉伸碎裂的有限元模拟. 固体力学学报. 2019(04): 372-380 . 百度学术
7. 李天密,张佳,方继松,刘丽芝,郑宇轩,周风华. PMMA膨胀环动态拉伸碎裂实验研究. 力学学报. 2018(04): 820-827 . 百度学术
8. 郑志军,詹世革,戴兰宏. 第二届全国爆炸与冲击动力学青年学者学术研讨会报告综述. 力学学报. 2018(01): 177-187 . 百度学术
9. 熊迅,李天密,马棋棋,方继松,郑宇轩,周风华. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟. 力学学报. 2018(03): 622-632 . 百度学术
10. 王晖,张小明,白润,王峰,李延超,张新. 高钨钽合金的动态力学性能研究现状. 中国钨业. 2018(03): 57-60 . 百度学术
11. 张佳,郑宇轩,周风华. 立式液压膨胀环实验技术研究. 宁波大学学报(理工版). 2017(02): 35-38 . 百度学术
12. 郭昭亮,范诚,刘明涛,汤铁钢,刘仓理. 膨胀环受力历史对应力应变关系的影响. 爆炸与冲击. 2016(06): 819-824 . 本站查看
13. 高宇,叶洲元,阳志成. SHPB实验装置发展. 城市地理. 2016(06): 247-248 . 百度学术
14. 刘明涛,汤铁钢,郭昭亮,张振涛,刘仓理. 膨胀环实验平台及其在材料动力学行为研究中的应用. 实验力学. 2016(01): 47-56 . 百度学术
其他类型引用(11)
-